Skip to main content
Log in

Development of multiplexed analysis for the photocatalytic activities of nanoparticles in aqueous suspension

  • Technical Note
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A multiplexed assay technique to measure the photocatalytic activity (PCA) of nanoparticles (NPs) in aqueous suspension was developed based on the observation of TiO2 NPs-photocatalytic oxidation rate of NADH by monitoring the fluorescence intensities. 96 sample solutions of a small volume (< 150 μL) could be assayed in a single run without separation of NPs within 15 min. PCA values can be measured with high sensitivity and low experimental uncertainties through the observation at various concentrations of photocatalyst, substrate, aqueous protons and pH buffer ions in a short measurement time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee and M. H. Rasoulifard, Preparation and investigation of photocatalytic properties of ZnO nanocrystals: Effect of operational parameters and kinetic study, World. Acad. Sci. Eng. Technol., 2007, 29, 267–272.

    Google Scholar 

  2. M. A. Fox and M. T. Dulay, Heterogeneous photocatalysis, Chem. Rev., 1993, 93, 341–357.

    Article  CAS  Google Scholar 

  3. Y. Guo, X. Quan, N. Lu, H. Zhao and S. Chen, High Photocatalytic Capability of Self-Assembled Nanoporous WO3 with Preferential Orientation of (002) Planes, Environ. Sci. Technol., 2007, 41, 4422–4427.

    Article  CAS  Google Scholar 

  4. D. M. Blake, P.-C. Maness, Z. Huang, E. J. Wolfrum, J. Huang and W. A. Jacoby, Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells, Sep. Purif. Rev., 1999, 28, 1–50.

    Article  CAS  Google Scholar 

  5. M. Gräzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol., A, 2004, 164, 3–14.

    Article  Google Scholar 

  6. O. Legrini, E. Oliveros and A. M. Braun, Photochemical processes for water treatment, Chem. Rev., 1993, 93, 671–698.

    Article  CAS  Google Scholar 

  7. R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka and J. Knowland, Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients, FEBS Lett., 1997, 418, 87–90.

    Article  CAS  Google Scholar 

  8. W. C. Dunlap, Y. Yamamoto, M. Inoue, M. Kashiba-Iwatsuki, M. Yamaguchi and K. Tomita, Uric acid photo-oxidation assay: in vitro comparison of sunscreening agents, Int. J. Cosmet. Sci., 1998, 20, 1–18.

    Article  CAS  Google Scholar 

  9. M. L. Auffan, M. Pedeutour, J. R. M. Rose, A. Masion, F. Ziarelli, D. Borschneck, C. Chaneac, C. L. Botta, P. Chaurand, J. R. M. Labille and J.-Y. Bottero, Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics, Environ. Sci. Technol., 2010, 44, 2689–2694.

    Article  CAS  Google Scholar 

  10. N. Daneshvar, M. Rabbani, N. Modirshahla and M. A. Behnajady, Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process, J. Photochem. Photobiol., A, 2004, 168, 39–45.

    Article  CAS  Google Scholar 

  11. J. B. D. Heredia, J. Torregrosa, J. R. Dominguez and J. A. Peres, Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic, J. Hazard. Mater., 2001, 83, 255–264.

    Article  Google Scholar 

  12. K. Nagaveni, G. Sivalingam, M. S. Hegde and G. Madras, Solar photo-catalytic degradation of dyes: high activity of combustion synthesized nano TiO2, Appl. Catal., B, 2004, 48, 83–93.

    Article  CAS  Google Scholar 

  13. A. R. Rahmani, M. T. Samadi and A. Enayati Moafagh, Investigation of photocatalytic degradation of phenol by UV/TiO2 process in aquatic solutions, J. Res. Health Sci., 2008, 8, 55–60.

    CAS  PubMed  Google Scholar 

  14. F. Berger, M. H. Ramírez-Hernández and M. Ziegler, The new life of a centenarian: signalling functions of NAD(P), Trends Biochem. Sci., 2004, 29, 111–118.

    Article  CAS  Google Scholar 

  15. N. Pollak, C. Dölle and M. Ziegler, The power to reduce: pyridine nucleotides-small molecules with a multitude of functions, Biochem. J., 2007, 402, 205–218.

    Article  CAS  Google Scholar 

  16. F. Q. Schafer and G. R. Buettner, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radical Biol. Med., 2001, 30, 1191–1212.

    Article  CAS  Google Scholar 

  17. W. Tan and E. S. Yeung, Monitoring the Reactions of Single Enzyme Molecules and Single Metal Ions, Anal. Chem., 1997, 69, 4242–4248.

    Article  CAS  Google Scholar 

  18. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke and W. W. Webb, Conformational Dependence of Intracellular NADH on Metabolic State Revealed by Associated Fluorescence Anisotropy, J. Biol. Chem., 2005, 280, 25119–25126.

    Article  CAS  Google Scholar 

  19. J. Antosiewicz, J. H. Spodnik, M. Teranishi, A. Herman-Antosiewicz, C. Kurono, T. Soji, M. Wo,źniak, A. Borkowska and T. Wakabayashi, NADH-generating substrates reduce peroxyl radical toxicity in RL-34 cells, Folia Morphol. (Warsz), 2009, 68, 247–255.

    CAS  Google Scholar 

  20. R. A. Olek, W. Ziolkowski, J. J. Kaczor, L. Greci, J. Popinigis and J. Antosiewicz, Antioxidant Activity of NADH and Its Analogue - An In Vitro Study, J. Biochem. Mol. Biol., 2004, 37, 416–421.

    CAS  PubMed  Google Scholar 

  21. J. E. D. Ruyck, M. Famer, J. Wouters, E. A. Perpète, J. Preat and D. Jacquemin, Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity, Chem. Phys. Lett., 2007, 450, 119–122.

    Article  Google Scholar 

  22. X. Huang, I. H. El-Sayed, X. Yi and M. A. El-Sayed, Gold nanopar-ticles: Catalyst for the oxidation of NADH to NAD+, J. Photochem. Photobiol., B, 2005, 81, 76–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjoong Yoon.

Additional information

Electronic supplementary information (ESI) available: Procedures for material preparation and spectroscopic measurement. Concentration dependence of substrate fluorescence intensity and photocatalytic activity. Photo-oxidation kinetics for the explanation of pH dependent PCA. See 10.1039/c1pp05244f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N.A., Kim, S.J., Park, BJ. et al. Development of multiplexed analysis for the photocatalytic activities of nanoparticles in aqueous suspension. Photochem Photobiol Sci 10, 1979–1982 (2011). https://doi.org/10.1039/c1pp05244f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05244f

Navigation