Skip to main content
Log in

Using photolabile protecting groups for the controlled release of bioactive volatiles

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

To develop their biological activity, bioactive volatile compounds, such as pheromones or fragrances, have to evaporate from surfaces. Because these surfaces are usually exposed to natural daylight, the preparation of non-volatile precursors using photoremovable protecting groups is an ideal tool to control the release of caged volatile molecules from various surfaces by light-induced covalent bond cleavage. Many photoreactions occur under mild environmental conditions and are highly selective. To break covalent bonds under typical application conditions, the photoreaction has to proceed at ambient daylight, to tolerate the presence of oxygen and to run in polar media (e.g. in water). The amount of volatiles generated from photochemical delivery systems depends on the light intensity to which the systems are exposed. Both photoisomerisations and photofragmentations have successfully been investigated for the slow release of caged pheromones and fragrances from their corresponding precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. Photobiology - The Science of Light and Life, ed. L. O. Björn, Kluwer Academic Publishers, Dordrecht, 2002.

    Google Scholar 

  2. M. S. Mc Donald, Photobiology of Higher Plants, John Wiley & Sons, Chichester, 2003.

    Google Scholar 

  3. E. P. Spalding and K. M. Folta, Illuminating topics in plant photobiology, Plant, Cell Environ., 2005, 28, 39–53.

    Article  CAS  Google Scholar 

  4. K. J. Hellingwerf, W. D. Hoff and W. Crielaard, Photobiology of microorganisms: how photosensors catch a photon to initialize signalling, Mol. Microbiol., 1996, 21, 683–693.

    Article  CAS  PubMed  Google Scholar 

  5. P. E. Hockberger, A history of ultraviolet photobiology for humans, animals and microorganisms, Photochem. Photobiol., 2002, 76, 561–579.

    Article  CAS  PubMed  Google Scholar 

  6. B. L. Diffey, Sources and measurement of ultraviolet radiation, Methods, 2002, 28, 4–13.

    Article  CAS  PubMed  Google Scholar 

  7. G. Rottman, Solar ultraviolet irradiance and its temporal variation, J. Atmos. Sol.–Terr. Phys., 1999, 61, 37–44.

    Article  CAS  Google Scholar 

  8. J. E. Frederick, H. E. Snell and E. K. Haywood, Solar ultraviolet radiation at the earth’s surface, Photochem. Photobiol., 1989, 50, 443–450.

    Article  CAS  Google Scholar 

  9. H. D. Roth, The beginnings of organic photochemistry, Angew. Chem., Int. Ed. Engl., 1989, 28, 1193–1207.

    Article  Google Scholar 

  10. A. Albini and V. Dichiarante, The ‘belle époque’ of photochemistry, Photochem. Photobiol. Sci., 2009, 8, 248–254.

    Article  CAS  Google Scholar 

  11. V. Balzani and F. Scandola, Chemistry and light. Part 1: photochemistry, a new dimension of chemistry, Quim. Nova, 1996, 19, 542–548.

    CAS  Google Scholar 

  12. H. D. Roth, Twentieth century developments in photochemistry. Brief historical sketches, Pure Appl. Chem., 2001, 73, 395–403.

    Article  CAS  Google Scholar 

  13. See, for example: A. M. Braun, M.-T. Maurette and E. Oliveros, Photochemical Technology, John Wiley & Sons, Chichester, 1991, or other textbooks of organic photochemistry.

    Google Scholar 

  14. N. Hoffmann, Photochemical reactions as key steps in organic synthesis, Chem. Rev., 2008, 108, 1052–1103.

    Article  CAS  PubMed  Google Scholar 

  15. T. Bach and J. P. Hehn, Photochemical reactions as key steps in natural product synthesis, Angew. Chem., Int. Ed., 2011, 50, 1000–1045.

    Article  CAS  Google Scholar 

  16. B. Amit, U. Zehavi and A. Patchornik, Photosensitive protecting groups - a review, Isr. J. Chem., 1974, 12, 103–113.

    Article  CAS  Google Scholar 

  17. V. N. R. Pillai, Photoremovable protecting groups in organic synthesis, Synthesis, 1980, 1–26.

    Google Scholar 

  18. V. N. R. Pillai, Photolytic deprotection and activation of functional groups, Org. Photochem., 1987, 9, 225–323.

    Google Scholar 

  19. C. G. Bochet, Photolabile protecting groups and linkers, J. Chem. Soc., Perkin Trans. 1, 2002, 125–142.

    Google Scholar 

  20. A. P. Pelliccioli and J. Wirz, Photoremovable protecting groups: reaction mechanisms and applications, Photochem. Photobiol. Sci., 2002, 1, 441–458.

    Article  PubMed  Google Scholar 

  21. R. S. Givens, P. G. Conrad II, A. L. Yousef and J.-I. Lee, Photoremovable protecting groups, in CRC Handbook of Organic Photochemistry and Photobiology, 2nd edn, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2004, pp. 69/1–69/46.

    Google Scholar 

  22. D. E. Falvey and C. Sundararajan, Photoremovable protecting groups based on electron transfer chemistry, Photochem. Photobiol. Sci., 2004, 3, 831–838.

    Article  CAS  PubMed  Google Scholar 

  23. J. Sankaranarayanan, S. Muthukrishnan and A. D. Gudmundsdottir, Photoremovable protecting groups based on photoenolization, Adv. Phys. Org. Chem., 2009, 43, 39–77.

    CAS  Google Scholar 

  24. C. G. Bochet and A. Blanc, Photolabile protecting groups in organic synthesis, in Handbook of Synthetic Photochemistry, ed. A. Albini and M. Fagnoni, Wiley-VCH, Weinheim, 2010, pp. 417–447.

    Google Scholar 

  25. C. G. Bochet, Chromatic orthogonality in organic synthesis, Synlett, 2004, 2268–2274.

    Google Scholar 

  26. C. G. Bochet, Photochemical release of various functional groups, Pure Appl. Chem., 2006, 78, 241–247.

    Article  CAS  Google Scholar 

  27. Dynamic Studies in Biology - Phototriggers, Photoswitches and Caged Biomolecules, ed. M. Goeldner and R. Givens, Wiley-VCH, Weinheim, 2005.

    Google Scholar 

  28. G. Mayer and A. Heckel, Biologically active molecules with a “light switch”, Angew. Chem., Int. Ed., 2006, 45, 4900–4921.

    Article  CAS  Google Scholar 

  29. G. C. R. Ellis-Davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology, Nat. Methods, 2007, 4, 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D. D. Young and A. Deiters, Photochemical control of biological processes, Org. Biomol. Chem., 2007, 5, 999–1005.

    Article  CAS  PubMed  Google Scholar 

  31. A. Deiters, Light activation as a method of regulating and studying gene expression, Curr. Opin. Chem. Biol., 2009, 13, 678–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H. Yu, J. Li, D. Wu, Z. Qiu and Y. Zhang, Chemistry and biological applications of photo-labile organic molecules, Chem. Soc. Rev., 2010, 39, 464–473.

    Article  PubMed  Google Scholar 

  33. The Chemistry and Biology of Volatiles, ed. A. Herrmann, John Wiley & Sons, Chichester, 2010.

    Google Scholar 

  34. Similar to the use of the term “fragrances” for individual perfumery raw materials and “perfumes” for fragrance mixtures, profragrances usually release one fragrance raw material, whereas properfumes generate mixtures of at least two different perfumery ingredients (see ref. 39 and 40).

  35. M. Gautschi, J. A. Bajgrowicz and P. Kraft, Fragrance chemistry -milestones and perspectives, Chimia, 2001, 55, 379–387.

    CAS  Google Scholar 

  36. A. Herrmann, Photochemical fragrance delivery systems based on the Norrish type II reaction - a review, Spectrum (Bowling Green, OH, U. S.), 2004, 17(2), 10–13; and 19.

    CAS  Google Scholar 

  37. V. Rataj, F. Ruyffelaere, J.-M. Aubry, Libération contrôlée de molécules de parfum à partir de précurseurs, Cah. Formulation, 2005, 12, 82–96.

    CAS  Google Scholar 

  38. S. Derrer, F. Flachsmann, C. Plessis and M. Stang, Applied photochemistry - light controlled perfume release, Chimia, 2007, 61, 665–669.

    Article  CAS  Google Scholar 

  39. A. Herrmann, Controlled release of volatiles under mild reaction conditions: from nature to everyday products, Angew. Chem., Int. Ed., 2007, 46, 5836–5863.

    Article  CAS  Google Scholar 

  40. A. Herrmann, Profragrances and properfumes, in The Chemistry and Biology of Volatiles, ed. A. Herrmann, John Wiley & Sons, Chichester, 2010, pp. 333–362.

    Chapter  Google Scholar 

  41. D. Lohmann and K. Petrak, Photoactivation and photocontrolled release of bioactive materials, Crit. Rev. Ther. Drug Carrier Syst., 1989, 5, 263–320.

    CAS  PubMed  Google Scholar 

  42. R. M. Sayre, C. Cole, W. Billhimer, J. Stanfield and R. D. Ley, Spectral comparison of solar simulators and sunlight, Photodermatol. Photoimmunol. Photomed., 1990, 7, 159–165.

    CAS  PubMed  Google Scholar 

  43. E. L. Clennan and A. Pace, Advances in singlet oxygen chemistry, Tetrahedron, 2005, 61, 6665–6691.

    Article  CAS  Google Scholar 

  44. B. B. Dey, R. H. R. Rao and T. R. Seshadri, Geometrical inversion in the acids derived from the coumarins, J. Ind. Chem. Soc., 1934, 743–749.

    Google Scholar 

  45. I. V. Berezin, S. D. Varfolomeyev and K. Martinek, A flash-induced reaction of a synthetic light-sensitive substrate with a-chymotrypsin, FEBS Lett., 1970, 8, 173–175.

    Article  CAS  PubMed  Google Scholar 

  46. K. Martinek and I. V. Berezin, Artificial light-sensitive enzymatic systems as chemical amplifiers of weak light signals, Photochem. Photobiol., 1979, 29, 637–649, and references cited therein.

    Article  CAS  PubMed  Google Scholar 

  47. A. D. Turner, S. V. Pizzo, G. W. Rozakis and N. A. Porter, Photochemical activation of acylated a-thrombin, J. Am. Chem. Soc., 1987, 109, 1274–1275.

    Article  CAS  Google Scholar 

  48. N. A. Porter, J. W. Thuring and H. Li, Selective inhibition, separation, and purification of serine proteases: a strategy based on a photoremovable inhibitor, J. Am. Chem. Soc., 1999, 121, 7716–7717.

    Article  CAS  Google Scholar 

  49. A. D. Turner, S. V. Pizzo, G. Rozakis and N. A. Porter, Photoreactivation of irreversibly inhibited serine proteinases, J. Am. Chem. Soc., 1988, 110, 244–250.

    Article  CAS  Google Scholar 

  50. P. M. Koenigs, B. C. Faust and N. A. Porter, Photochemistry of enzyme-bound cinnamoyl derivatives, J. Am. Chem. Soc., 1993, 115, 9371–9379.

    Article  CAS  Google Scholar 

  51. B. Wang and A. Zheng, A photo-sensitive protecting group for amines based on coumarin chemistry, Chem. Pharm. Bull., 1997, 45, 715–718.

    Article  CAS  Google Scholar 

  52. D. Anderson and G. Frater, (Givaudan Roure SA), Aryl-acrylic acid esters useful as precursors for organoleptic compounds, EP 0 936 211, 1999, Chem. Abstr., 1999, 131, 170173.

    Google Scholar 

  53. F. Flachsmann, J.-P. Bachmann, (Givaudan SA), 3-(2-Alkoxycarbonyloxy-phenyl) acrylic acid esters and their use as precursors for the delivery of olfactory compounds, WO 2005/077881, 2005, Chem. Abstr., 2005, 143, 229556.

    Google Scholar 

  54. R. R. Dykstra, G. S. Miracle and L. M. Gray, (The Procter&Gamble Company), Photo-labile pro-fragrance conjugates, WO 02/38120, 2002, Chem. Abstr., 2002, 136, 390775.

    Google Scholar 

  55. R. R. Dykstra and G. S. Miracle, (The Procter&Gamble Company), Photo-activated pro-fragrances, WO 02/083620, 2002, Chem. Abstr., 2002, 137, 315791.

    Google Scholar 

  56. D. Anderson, G. Frater and F. Kumli, (Givaudan-Roure SA), Compounds with protected hydroxyl groups, EP 0 952 142, 1999, Chem. Abstr., 1999, 131, 311932.

    Google Scholar 

  57. Y. Tsujimoto, Y. Shigemitsu, T. Miyamoto and Y. Odaira, The photoreduction of o-methoxycarbonylbenzophenone, Bull. Chem. Soc. Jpn., 1976, 49, 1445–1446.

    Article  CAS  Google Scholar 

  58. P. B. Jones, M. P. Pollastri and N. A. Porter, 2-Benzoylbenzoic acid: a photolabile mask for alcohols and thiols, J. Org. Chem., 1996, 61, 9455–9461.

    Article  CAS  Google Scholar 

  59. P. B. Jones and N. A. Porter, 2-Aroylbenzoyl serine proteases: photoreversible inhibition or photoaffinity labeling?, J. Am. Chem. Soc., 1999, 121, 2753–2761.

    Article  CAS  Google Scholar 

  60. J. Pika, A. Konosonoks, R. M. Robinson, P. N. D. Singh and A. D. Gudmundsdottir, Photoenolization as a means to release alcohols, J. Org. Chem., 2003, 68, 1964–1972.

    Article  CAS  PubMed  Google Scholar 

  61. J. Pika, A. Konosonoks, P. Singh and A. D. Gudmundsdottir, Designing esters which release alcohols upon exposure to light, Spectrum (Bowling Green, OH, U. S.), 2003, 16(4), 12–17.

    CAS  Google Scholar 

  62. A. Konosonoks, P. J. Wright, M.-L. Tsao, J. Pika, K. Novak, S. M. Mandel, J. A. Krause Bauer, C. Bohne, A. D. Gudmundsdóttir, Photoenolization of 2-(2-methyl benzoyl) benzoic acid, methyl ester: effect of E photoenol lifetime on the photochemistry, J. Org. Chem., 2005, 70, 2763–2770.

    Article  CAS  PubMed  Google Scholar 

  63. C. Plessis and S. Derrer, Novel photolactonisation from xanthenoic esters, Tetrahedron Lett., 2001, 42, 6519–6522.

    Article  CAS  Google Scholar 

  64. G. Ciamician and P. Silber, Chemische Lichtwirkungen, Ber. Dtsch. Chem. Ges., 1901, 34, 2040–2046.

    Article  CAS  Google Scholar 

  65. Y. V. Il’ichev, M. A. Schwörer and J. Wirz, Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP, J. Am. Chem. Soc., 2004, 126, 4581–4595.

    Article  PubMed  CAS  Google Scholar 

  66. J. E. T. Corrie, A. Barth, V. R. N. Munasinghe, D. R. Tentham and M. C. Hutter, Photolytic cleavage of 1-(2-nitrophenyl)ethyl ethers involves two parallel pathways and product release is rate-limited by decomposition of a common hemiacetal intermediate, J. Am. Chem. Soc., 2003, 125, 8546–8554.

    Article  CAS  PubMed  Google Scholar 

  67. B. Hellrung, Y. Kamdzhilov, M. Schwörer and J. Wirz, Photorelease of alcohols from 2-nitrobenzyl ethers proceeds via hemiacetals and may be further retarded by buffers intercepting the primary aci-nitro intermediates, J. Am. Chem. Soc., 2005, 127, 8934–8935.

    Article  CAS  PubMed  Google Scholar 

  68. K. Powell, J. Benkhoff, W. Fischer and K. Fritzsche, Secret sensations: novel functionalities triggered by light - Part II: photolatent fragrances, Eur. Coat. J., 2006, (9), 40–49.

    Google Scholar 

  69. J. Hébert and D. Gravel, o-Nitrophenylethylene glycol: a photosensitive protecting group for aldehydes and ketones, Can. J. Chem., 1974, 52, 187–189.

    Article  Google Scholar 

  70. D. Gravel, J. Hebert and D. Thoraval, o-Nitrophenylethylene glycol as photoremovable protective group for aldehydes and ketones: syntheses, scope, and limitations, Can. J. Chem., 1983, 61, 400–410.

    Article  CAS  Google Scholar 

  71. D. Gravel, S. Murray and G. Ladouceur, o-Nitrobenzyl alcohol, a simple and efficient reagent for the photoreversible protection of aldehydes and ketones, J. Chem. Soc., Chem. Commun., 1985, 1828–1829.

    Google Scholar 

  72. J. A. Pickett, G. W. Dawson, D. C. Griffiths, L. Xun, E. D. M. Macaulay and C. M. Woodcock, Propheromones: an approach to the slow release of pheromones, Pesticide Sci., 1984, 15, 261–264.

    Google Scholar 

  73. X. Liu, E. D. M. Macaulay and J. A. Pickett, Propheromones that release pheromonal carbonyl compounds in light, J. Chem. Ecol., 1984, 10, 809–822.

    Article  CAS  PubMed  Google Scholar 

  74. L. Ceita, A. K. Maiti, R. Mestres and A. Tortajada, o-Nitroaryldioxolanes for protection of pheromones. Study of the photodelivery of carbonyl compounds, J. Chem. Res. Synop., 2001, 403–404.

    Google Scholar 

  75. M. J. Aurell, C. Boix, M. L. Ceita, C. Llopis, A. Tortajada and R. Mestres, Polymer-supported o-nitrophenylethylene glycols for photoremovable protection of aldehydes, J. Chem. Res., Synop., 1995, 452–453.

    Google Scholar 

  76. J. Lage Robles and C. G. Bochet, Photochemical release of aldehydes from a-acetoxy nitroveratryl ethers, Org. Lett., 2005, 7, 3545–3547.

    Article  CAS  Google Scholar 

  77. A. Blanc and C. G. Bochet, Bis(o-nitrophenyl)ethanediol: a practical photolabile protecting group for ketones and aldehydes, J. Org. Chem., 2003, 68, 1138–1141.

    Article  CAS  PubMed  Google Scholar 

  78. R. L. Blankespoor, R. P. Smart, E. D. Batts, A. A. Kiste, R. E. Lew, M. E. Vander Vliet, Photochemistry of 1-alkoxy- and 1-(benzyloxy)-9,10-anthraquinones in methanol: a facile process for the preparation of aldehydes and ketones, J. Org. Chem., 1995, 60, 6852–6859.

    Article  CAS  Google Scholar 

  79. R. L. Blankespoor, T. DeVries, E. Hansen, J. M. Kallemeyn, A. M. Klooster, J. A. Mulder, R. P. Smart, D. A. Vander Griend, Photochemical synthesis of aldehydes in the solid phase, J. Org. Chem., 2002, 67, 2677–2681.

    Article  CAS  PubMed  Google Scholar 

  80. R. G. Brinson and P. B. Jones, Caged trans-4-hydroxy-2-nonenal, Org. Lett., 2004, 6, 3767–3770.

    Article  CAS  PubMed  Google Scholar 

  81. R. G. Brinson, S. C. Hubbard, D. R. Zuidema and P. B. Jones, Two new anthraquinone photoreactions, J. Photochem. Photobiol., A, 2005, 175, 118–128.

    Article  CAS  Google Scholar 

  82. P. B. Jones, R. G. Brinson, S. J. Sarma and S. Elkazaz, Observation of heavy atom effects in the development of water soluble caged 4-hydroxy-trans-2-nonenal, Org. Biomol. Chem., 2008, 6, 4204–4211.

    Article  CAS  PubMed  Google Scholar 

  83. B. Levrand and A. Herrmann, Light-induced controlled release of fragrance aldehydes from 1-alkoxy-9,10-anthraquinones for applications in functional perfumery, Flavour Fragrance J., 2006, 21, 400–409.

    Article  CAS  Google Scholar 

  84. S. Rochat, C. Minardi, J.-Y. de Saint Laumer and A. Herrmann, Controlled release of perfumery aldehydes and ketones by Norrish type-II photofragmentation of a-keto esters in undegassed solution, Helv. Chim. Acta, 2000, 83, 1645–1671.

    Article  CAS  Google Scholar 

  85. A. Herrmann, C. Debonneville, V. Laubscher and L. Aymard, Dynamic headspace analysis of the light-induced controlled release of perfumery aldehydes and ketones from a-keto esters in bodycare and household applications, Flavour Fragrance J., 2000, 15, 415–420.

    Article  CAS  Google Scholar 

  86. B. Levrand and A. Herrmann, Controlled light-induced release of volatile aldehydes and ketones by photofragmentation of 2-oxo-(2-phenyl)acetates, Chimia, 2007, 61, 661–664.

    Article  CAS  Google Scholar 

  87. S. Hu and D. C. Neckers, Rapid regio- and diastereoselective Paternò-Büchi reaction of alkyl phenylglyoxylates, J. Org. Chem., 1997, 62, 564–567.

    Article  CAS  PubMed  Google Scholar 

  88. S. Hu and D. C. Neckers, Photochemical reactions of alkenyl phenylglyoxylates, J. Org. Chem., 1997, 62, 6820–6826.

    Article  CAS  Google Scholar 

  89. E. S. Huyser and D. C. Neckers, The photochemical reactions of alkyl phenylglyoxalates in alcohols, J. Org. Chem., 1964, 29, 276–278.

    Article  CAS  Google Scholar 

  90. R. S. Davidson and D. Goodwin, The mechanism of photoinduced fragmentation of alkyl pyruvates, J. Chem. Soc., Perkin Trans. 2, 1982, 993–997.

    Google Scholar 

  91. J. C. Scaiano, M. V. Encinas, E. A. Lissi, A. Zanocco and P. K. Das, Photochemistry of alkyl pyruvates, J. Photochem., 1986, 33, 229–236.

    Article  CAS  Google Scholar 

  92. S. Hu and D. C. Neckers, Photochemical reactions of alkyl phenylglyoxylates, J. Org. Chem., 1996, 61, 6407–6415.

    Article  CAS  PubMed  Google Scholar 

  93. R. G. W. Norrish, M. E. S. Appleyard, Primary photochemical reactions. Part IV. Decomposition, of methyl ethyl ketone and methyl butyl ketone, J. Chem. Soc., 1934, 874–880.

    Google Scholar 

  94. C. H. Bamford, R. G. W. Norrish, Primary photochemical reactions. Part VII. Photochemical, decomposition of iso valeraldehyde and di-n-propyl ketone, J. Chem. Soc., 1935, 1504–1511.

    Google Scholar 

  95. J. C. Scaiano, E. A. Lissi and M. V. Encina, Chemistry of the biradicals produced in the Norrish type II reaction, Rev. Chem. Intermed., 1978, 2, 139–196.

    Article  CAS  Google Scholar 

  96. P. J. Wagner and P. Klán, Norrish type II photoelimination of ketones: cleavage of 1,4-biradicals formed by γ-hydrogen abstraction, in CRC Handbook of Organic Photochemistry and Photobiology, 2nd edn, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2004, pp. 52/1–52/31.

    Google Scholar 

  97. S. Hu and D. C. Neckers, Mechanism of alkyl phenylglyoxylates photoreaction in the presence of oxygen, J. Photochem. Photobiol., A, 1998, 118, 75–80.

    Article  CAS  Google Scholar 

  98. M. C. Pirrung and R. J. Tepper, Photochemistry of substituted benzoylformate esters. A convenient method for the photochemical oxidation of alcohols, J. Org. Chem., 1995, 60, 2461–2465.

    Article  CAS  Google Scholar 

  99. A. G. Griesbeck, Photocycloadditions of alkenes to excited carbonyls, Mol. Supramol. Photochem., 2005, 12, 89–139.

    CAS  Google Scholar 

  100. Standardized Human Olfactory Thresholds, ed. M. Devos, F. Patte, J. Rouault, P. Laffort and L. J. Van Gemert, Oxford University Press, Oxford, 1990.

    Google Scholar 

  101. P. J. Wagner, Type II photoelimination and photocyclization of ketones, Acc. Chem. Res., 1971, 4, 168–177.

    Article  CAS  Google Scholar 

  102. P. J. Wagner, Chemistry of excited triplet organic carbonyl compounds, Top. Curr. Chem., 1976, 66, 1–52.

    Article  CAS  Google Scholar 

  103. U. Huchel, C. Kropf, A. Griesbeck, O. Hinze and U. Sundermeier, (Henkel AG & Co. KGaA), Photolabile fragrance storage substances, WO 2010/066486, 2010, Chem. Abstr., 2010, 153, 69811.

    Google Scholar 

  104. B. Levrand and A. Herrmann, Light induced controlled release of fragrances by Norrish type II photofragmentation of alkyl phenyl ketones, Photochem. Photobiol. Sci., 2002, 1, 907–919.

    Article  CAS  PubMed  Google Scholar 

  105. U. Huchel, C. Kropf, A. Griesbeck, O. Hinze, R. Perez-Ruiz, (Henkel AG & Co. KGaA), Photolabile fragrance storage substances, WO 2009/118219, 2009, Chem. Abstr., 2009, 151, 410868.

    Google Scholar 

  106. M. Pfau, J. Molnar and N. D. Heindel, Photoénolisation. XI. Photo-oxydation, des o-méthylbenzophénones, Bull. Soc. Chim. Fr., 1983, 164–169.

    Google Scholar 

  107. A. Herrmann, Controlled release of fragrances by light-induced fragmentation of alkyl phenyl ketones, Proc. Int. Symp. Controlled Release Bioact. Mater., 2003, 30, 112.

    Google Scholar 

  108. A. Albini and M. Fagnoni, Green chemistry and photochemistry were born at the same time, Green Chem., 2004, 6, 1–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, A. Using photolabile protecting groups for the controlled release of bioactive volatiles. Photochem Photobiol Sci 11, 446–459 (2012). https://doi.org/10.1039/c1pp05231d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05231d

Navigation