Skip to main content
Log in

Formation of hydroxyl radicals by irradiated 1-nitronaphthalene (1NN): oxidation of hydroxyl ions and water by the 1NN triplet state

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The excited triplet state of 1-nitronaphthalene (31NN*) reacts with OH with a second-order reaction rate constant of (1.66 ± 0.08)×107 M-1 s−1 (μ ± σ). The reaction yields the ·OH radical and the radical anion 1NN−·. In aerated solution, the radical 1NN−· would react with O2 to finally produce H2O2 upon hydroperoxide/superoxide disproportionation. The photolysis of H2O2 is another potential source of ·OH, but such a pathway would be a minor one in circumneutral (pH 6.5) or in basic solution ([OH] = 0.3-0.5 M). The oxidation of H2O by 31NN*, with rate constant 3.8 ± 0.3 M−1 s−1, could be the main ·OH source at pH 6.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. Q. T. Liu, R. I. Cumming and A. D. Sharpe, Photo-induced environmental depletion processes of beta-blockers in river water, Photochem. Photobiol. Sci., 2009, 8, 768–777.

    Article  CAS  PubMed  Google Scholar 

  2. S. Canonica and U. Laubscher, Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants, Photochem. Photobiol. Sci., 2008, 7, 547–551.

    Article  CAS  PubMed  Google Scholar 

  3. M. M. Caldwell, J. F. Bornman, C. L Ballare, S. D. Flint and G. Kulandaivelu, Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with bother climate change factors, Photochem. Photobiol. Sci., 2007, 6, 252–266.

    Article  CAS  PubMed  Google Scholar 

  4. R. G. Epp, D. J. Erickson, N. D. Paul and B. Sulzberger, Interactive effects of solar UV radiation and climate change on biogeochemical cycling, Photochem. Photobiol. Sci., 2007, 6, 286–300.

    Article  CAS  Google Scholar 

  5. A. Paul, S. Hackbarth, R. D. Vogt, B. Roder, B. K. Burnison and C. E. W. Steinberg, Photogeneration of singlet oxygen by humic substances: comparison of humic substances of aquatic and terrestrial origin, Photochem. Photobiol. Sci., 2004, 3, 273–280.

    Article  CAS  PubMed  Google Scholar 

  6. A. L. Boreen, W. A. Arnold and K. McNeill, Photodegradation of pharmaceuticals in the aquatic environment: A review, Aquat. Sci., 2003, 65, 320–341.

    Article  CAS  Google Scholar 

  7. J. P. Escalada, A. Pajares, J. Gianotti, A. Biasutti, S. Criado, P. Molina, W. Massad, F. Amat-Guerri and N. A. Garcia, Photosensitized degradation in water of the phenolic pesticides bromoxynil and dichlorophen in the presence of riboflavin, as a model of their natural photodecomposition in the environment, J. Hazard. Mater., 2011, 186, 466–472.

    Article  CAS  PubMed  Google Scholar 

  8. J. J. Guerard, Y. P. Chin, H. Mash and C. M. Hadad, Photochemical fate of sulfadimethoxine in aquaculture waters, Environ. Sci. Technol., 2009, 43, 8587–8592.

    Article  CAS  PubMed  Google Scholar 

  9. J. Peuravuori and K. Pihlaja, Phototransformations of selected pharmaceuticals under low-energy UVA-vis and powerful UVB-UVA irradiations in aqueous solutions - the role of natural dissolved organic chromophoric material, Anal. Bioanal. Chem., 2009, 394, 1621–1636.

    Article  CAS  PubMed  Google Scholar 

  10. J. J. Werner, K. McNeill and W. A. Arnold, Environmental photodegradation of mefenamic acid, Chemosphere, 2005, 58, 1339–1346.

    Article  CAS  PubMed  Google Scholar 

  11. P. L. Miller and Y. P. Chin, Photoinduced degradation of carbaryl in a wetland surface water, J. Agric. Food Chem., 2002, 50, 6758–6765.

    Article  CAS  PubMed  Google Scholar 

  12. J. J. Cui, H. M. Huang, S. Cook and K. Zeng, Effect of photosensitizer riboflavin on the fate of 2,4,6-trinitrotoluene in a freshwater environment, Chemosphere, 2001, 44, 621–625.

    Article  CAS  PubMed  Google Scholar 

  13. S. Chiron, C. Minero and D. Vione, Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters, Environ. Sci. Technol., 2006, 40, 5977–5983.

    Article  CAS  PubMed  Google Scholar 

  14. T. Arakaki, T. Miyake, M. Shibata and H Sakugawa, Photochemical formation and scavenging of hydroxyl radical in rain and dew waters, Nippon Kagaku Kaishi, 1999, 5, 335–340.

    Article  Google Scholar 

  15. C. Anastasio and K. G. McGregor, Chemistry of fog waters in California’s Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen, Atmos. Environ., 2001, 35, 1079–1089.

    Article  CAS  Google Scholar 

  16. A. Albinet, C. Minero and D. Vione, Photochemical generation of reactive species upon irradiation of rainwater: Negligible photoactivity of dissolved organic matter, Sci. Total Environ., 2010, 408, 3367–3373.

    Article  CAS  PubMed  Google Scholar 

  17. J. Hoigné, Formulation and calibration of environmental reaction kinetics; oxidations by aqueous photo-oxidants as an example. In: W. Stumm, Editor, Aquatic Chemical Kinetics, Wiley, New York, 1990, pp. 43–69.

    Google Scholar 

  18. S. Canonica, Oxidation of aquatic organic contaminants induced by excited triplet states, Chimia, 2007, 61, 641–644.

    Article  CAS  Google Scholar 

  19. D. E. Latch and K. McNeill, Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions, Science, 2006, 311, 1743–1747.

    Article  CAS  PubMed  Google Scholar 

  20. D. Vione, G. Falletti, V. Maurino, C. Minero, E. Pelizzetti, M. Malandrino, R. Ajassa, R. I. Olariu and C. Arsene, Sources and sinks of hydroxyl radicals upon irradiation of natural water samples, Environ. Sci. Technol., 2006, 40, 3775–3781.

    Article  CAS  PubMed  Google Scholar 

  21. F. al Housari, D. Vione, S. Chiron and S. Barbati, Reactive photoinduced species in estuarine waters. Characterization of hydroxyl radical, singlet oxygen and dissolved organic matter triplet state in natural oxidation processes, Photochem. Photobiol. Sci., 2010, 9, 78–86.

    Article  PubMed  Google Scholar 

  22. K. M. G. Mostofa and H. Sakugawa, Spatial and temporal variations and factors controlling the concentrations of hydrogen peroxide and organic peroxides in rivers, Environ. Chem., 2009, 6, 524–534.

    Article  CAS  Google Scholar 

  23. R. M. Dalrymple, A. K. Carfagno and C. M. Sharpless, Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide, Environ. Sci. Technol., 2010, 44, 5824–5829.

    Article  CAS  PubMed  Google Scholar 

  24. E. M. White, P. P. Vaughan and R. G. Zepp, Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river of the southeastern United States, Aquat. Sci., 2003, 65, 402–414.

    Article  CAS  Google Scholar 

  25. A. W. Vermilyea and B. M. Voelker, Photo-Fenton reaction at near neutral pH, Environ. Sci. Technol., 2009, 43, 6927–6933.

    Article  CAS  PubMed  Google Scholar 

  26. S. E. Page, W. A. Arnold and K. McNeill, Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions, Environ. Sci. Technol., 2011, 45, 2818–2825.

    Article  CAS  PubMed  Google Scholar 

  27. D. Gan, M. Jia, P. P. Vaughan, D. E. Falvey and N. V. Blough, Aqueous photochemistry of methyl-benzoquinone, J. Phys. Chem. A, 2008, 112, 2803–2812.

    Article  CAS  PubMed  Google Scholar 

  28. V. Maurino, D. Borghesi, D. Vione and C. Minero, Transformation of phenolic compounds upon UVA irradiation of anthraquinone-2-sulfonate, Photochem. Photobiol. Sci., 2008, 7, 321–327.

    Article  CAS  PubMed  Google Scholar 

  29. P. R. Maddigapu, A. Bedini, C. Minero, V. Maurino, D. Vione, M. Brigante, G. Mailhot and M. Sarakha, The pH-dependent photochemistry of anthraquinone-2-sulfonate, Photochem. Photobiol. Sci., 2010, 9, 323–330.

    Article  CAS  PubMed  Google Scholar 

  30. D. Vione, M. Ponzo, D. Bagnus, V. Maurino, C. Minero and M. E. Carlotti, Comparison of different probe molecules for the quantification of hydroxyl radicals in aqueous solution, Environ. Chem. Lett., 2010, 8, 95–100.

    Article  CAS  Google Scholar 

  31. T. Charbouillot, M. Brigante, G. Mailhot, P. R. Maddigapu, Claudio Minero and D. Vione, Terephthalic acid as probe for ·OH quantification in natural waters: Performance and selectivity as a function of temperature, pH and composition of atmospherically relevant aqueous media, J. Photochem. Photobiol. A: Chem., 2011, 222, 70–76.

    Article  CAS  Google Scholar 

  32. L. J. A. Martins, M. M. M. M. Fernandez, T. J. Kemp, S. J. Formosinho and J. S. Branco, Interaction of halide and pseudohalide lons with the triplet state of 1-nitronaphthalene. Effect of acidity: a flash photolysis study, J. Chem. Soc., Faraday Trans., 1991, 87, 3617–3624.

    Article  CAS  Google Scholar 

  33. M. Brigante, T. Charbouillot, D. Vione and G. Mailhot, Photochemistry of 1-nitronaphthalene: A potential source of singlet oxygen and radical species in atmospheric waters, J. Phys. Chem. A, 2010, 114, 2830–2836.

    Article  CAS  PubMed  Google Scholar 

  34. P. R. Maddigapu, C. Minero, V. Maurino, D. Vione, M. Brigante, T. Charbouillot, M. Sarakha and G. Mailhot, Photochemical and photosensitised reactions involving 1-nitronaphthalene and nitrite in aqueous solution, Photochem. Photobiol. Sci., 2011, 10, 601–609.

    Article  PubMed  CAS  Google Scholar 

  35. M. Mochizuki, S. Yamazaki, K. Kano and T. Ikeda, Kinetic analysis and mechanistic aspects of autoxidation of catechins, Biochim. Biophys. Acta, Gen. Subj., 2002, 1569, 35–44.

    Article  CAS  Google Scholar 

  36. B. G. Kwon and J. H. Lee, A kinetic method for HO2·/O2 determination in advanced oxidation processes, Anal. Chem., 2004, 76, 6359–6364.

    Article  CAS  PubMed  Google Scholar 

  37. C. von Sonntag, Advanced oxidation processes: mechanistic aspects, Water Sci. Technol., 2008, 58, 1015–1021.

    Article  CAS  Google Scholar 

  38. A. E. Martell, R. M. Smith and R. J. Motekaitis, Critically selected stability constants of metal complexes database, version 4.0, 1997.

    Google Scholar 

  39. D. Vialaton and C. Richard, Phototransformation of aromatic pollutants in solar light: Photolysis versus photosensitized reactions under natural water conditions, Aquat. Sci., 2002, 64, 207–215.

    Article  CAS  Google Scholar 

  40. D. Vione, S. Khanra, S. Cucu Man, P. R. Maddigapu, R. Das, C. Arsene, R. I. Olariu, V. Maurino and C. Minero, Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the·OH scavengers bicarbonate and carbonate, Water Res., 2009, 43, 4718–4728.

    Article  CAS  PubMed  Google Scholar 

  41. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical actinometry, Pure Appl. Chem., 2004, 76, 2105–2146.

    Article  CAS  Google Scholar 

  42. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Critical review of rate constants for reactions of hydrated electron, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution, J. Phys. Chem. Ref. Data, 1988, 17, 513–886.

    Article  CAS  Google Scholar 

  43. P. Nissenson, D. Dabdub, R. Das, V. Maurino, C. Minero and D. Vione, Evidence of the water-cage effect on the photolysis of NO3 and FeOH2+ Implications of this effect and of H2O2 surface accumulation on photochemistry at the air-water interface of atmospheric droplets, Atmos. Environ., 2010, 44, 4859–4866.

    Article  CAS  Google Scholar 

  44. U. Deister, P. Warneck and C. Wurzinger, ·OH radicals generated by NO3 photolysis in aqueous solution: Competition kinetics and a study of the reaction·OH + CH2(OH)SO3, Ber. Bunsenges. Phys. Chem., 1990, 94, 594–599.

    Article  CAS  Google Scholar 

  45. T. Fournier, S. M. Tavender, A. W. Parker, G. D. Scholes and D. Phillips, Competitive energy and electron-transfer reactions of the triplet state of 1-nitronaphthalene: A laser flash photolysis and time-resolved resonance Raman study, J. Phys. Chem. A, 1997, 101, 5320–5326.

    Article  CAS  Google Scholar 

  46. P. Wardman, Reduction potentials of one-electron couples involving free radicals in aqueous solution, J. Phys. Chem. Ref. Data, 1989, 17, 1027–1717.

    Google Scholar 

  47. J. S. Zugazagoitia, C. X. Almora-Diaz and J. Peon, Ultra-fast intersystem crossing in 1-nitronaphthalene. An experimental and computational study, J. Phys. Chem. A, 2008, 112, 358–365.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Vione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, B., Rolle, M., Minero, C. et al. Formation of hydroxyl radicals by irradiated 1-nitronaphthalene (1NN): oxidation of hydroxyl ions and water by the 1NN triplet state. Photochem Photobiol Sci 10, 1817–1824 (2011). https://doi.org/10.1039/c1pp05216k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05216k

Navigation