Skip to main content
Log in

Photochemistry and DNA-affinity of some pyrimidine-substituted styryl-azinium iodides

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The relaxation properties of the excited states of three iodides of trans-1,2-diarylethene analogues (where one aryl group is a methylpyridinium, methylquinolinium or dimethylimidazolium group and the other one is a phenyl ring para-substituted by a pyrimidine ring) have been investigated in buffered (pH = 7) aqueous solution. As found in previous works for several analogues, these quaternized salts undergo efficient transcis photoisomerization while the yield of the radiative deactivation is very small at room temperature. The solvent effect on the spectral behaviour indicates the occurrence of intramolecular charge transfer which can induce interesting non-linear optical properties. The results of a study of the interactions of these salts with DNA, which might affect the cell metabolism, showed a relatively modest binding affinity for the pyridinium and imidazolium salts and a more substantial affinity for the quinolinium analogue. The formation of ligand-DNA complexes affects only slightly the radiative relaxation yield while leading to a relevant reduction of the isomerization yield. Measurements of the linear dichroism behaviour of the three compounds and comparison with three analogues bearing furan or thienyl groups, which have been found to display different affinity with DNA in previous works, gave interesting information on the nature of the ligand-DNA binding of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. E. Marri, U. Mazzucato, C. G. Fortuna, G. Musumarra and A. Spalletti, Photobehaviour of some 1-heteroaryl-2-(1-methylpyridinium-2-yl)ethene iodides (free and complexed with DNA), J. Photochem. Photobiol., A, 2006, 179, 314–319.

    Article  CAS  Google Scholar 

  2. C. G. Fortuna, U. Mazzucato, G. Musumarra, D. Pannacci and A. Spalletti, Photochemistry and DNA-affinity of some stilbene and distyrylbenzene analogues containing pyridinium and imidazolium iodides, J. Photochem. Photobiol., A, 2010, 216, 66–72.

    Article  CAS  Google Scholar 

  3. A. Mazzoli, B. Carlotti, C. G. Fortuna and A. Spalletti, Photobehaviour and DNA interaction of styrylquinolinium salts bearing thiophene substituents, Photochem. Photobiol. Sci., 2011, 10, 973–979.

    Article  CAS  Google Scholar 

  4. H. Görner, A. Fojtik, J. Wróblewski and L. J. Currell, Singlet mechanism for trans→cis photoisomerization of quaternary salts of 4-substituted 4′-azastilbenes (R = CN, H, CH3, and OCH3) and their quinolinium analogues. VIII, Z. Naturforsch, 1985, 40a, 525–537

    Article  Google Scholar 

  5. H. Görner and H. Gruen, Photophysical properties of quaternary salts of 4-dialkylamino-4′-azastilbenes and their quinolinium analogues in solution: IX, J. Photochem., 1985, 28, 329–350

    Article  Google Scholar 

  6. H. Görner, Photoinduced electron transfer vs. transcis photoisomerization of quaternary salts of 4-substituted 4′-azastilbenes (R = CN, H, CH3, and OCH3) and their quinolinium analogues. 10, J. Phys. Chem., 1987, 91, 1887–1894, and references cited therein.

    Article  Google Scholar 

  7. D. G. Whitten and M. T. McCall, Radiationless processes in the photochemistry of stilbazoles and 1,2-bis-pyridylethylenes, J. A m. Chem. Soc., 1969, 91, 5097–5103, and references cited therein.

    Article  CAS  Google Scholar 

  8. U. Mazzucato, Photophysical and photochemical behaviour of stilbene-like molecules and their aza-analogues, Pure Appl. Chem., 1982, 54, 1705–1721, and references cited therein

    Article  CAS  Google Scholar 

  9. G. Marconi, G. Bartocci, U. Mazzucato, A. Spalletti, F. Abbate, L. Angeloni and E. Castellucci, A theoretical and experimental study of the excited state relaxation properties of mono-aza- and di-aza-trans-stilbenes, Am. Inst. Phys., Conf. Proc., 1996, 364, 175–182, and references cited therein.

    CAS  Google Scholar 

  10. J. Saltiel and Y.-P. Sun, Cis-trans isomerization of C=C double bonds, in H. Dürr, H. Bouas-Laurent, Eds, Photochromism: Molecules and Systems, Elsevier, Amsterdam, 1990, pp. 64–162, and references cited therein.

    Google Scholar 

  11. F. H. Quina and D. G. Whitten, Medium effects in photochemical reactions. Photochemistry of surfactants alkyl-4-stilbazole salts in solutions, in the solid state and in monolayer assemblies, J. Am. Chem. Soc., 1975, 97, 1602–1603

    Article  CAS  Google Scholar 

  12. M. Pattabiraman, A. Natarajan, R. Kaliappan, J. T. Mague and V. Ramamurthy, Template directed photodimerization of trans-1,2-bis(n-pyridyl)-ethylenes and stilbazoles in water, Chem. Commun., 2005, 4542–4544.

    Google Scholar 

  13. S. Bradamante, A. Facchetti and G. A. Pagani, Heterocycles as donor and acceptor units in push-pull conjugated molecules. Part 1, J. Phys. Org. Chem., 1997, 10, 514–524, and references cited therein.

    Article  CAS  Google Scholar 

  14. B. Juskowiak and M. Chudak, Photoisomerization of arylstilbazolium ligands in the presence of DNA, Photochem. Photobiol., 2004, 79, 137–144, and references cited therein.

    Article  CAS  Google Scholar 

  15. V. Barresi, D. F. Condorelli, C. G. Fortuna, G. Musumarra and S. Scirè, In vitro antitumor activitiesof 2,6-di-[2-(heteroaryl)vinyl]pyridines and pyridiniums, Bioorg. Med. Chem., 2002, 10, 2899–2904.

    Article  CAS  Google Scholar 

  16. F. P. Ballistreri, V. Barresi, G. Consiglio, C. G. Fortuna, M. L. Longo and G. Musumarra, Synthesis, spectroscopic characterization and in vitro antitumor activity of new trans 1-heteroaryl-2-(1-methylpyridinium-2-yl) ethylenes, ARKIVOC, 2003, part (i), 105–117

    Article  Google Scholar 

  17. F. P. Ballistreri, V. Barresi, P. Benedetti, G. Caltabiano, C. G. Fortuna, M. L. Longo and G. Musumarra, Design, synthesis and in vitro antitumor activity of new trans 2-[2-(heteroaryl)vinyl]-1,3-dimethylimidazolium iodides, Bioorg. Med. Chem., 2004, 12, 1689–1695.

    Article  CAS  Google Scholar 

  18. C. G. Fortuna, et al., ARKIVOC, submitted.

  19. G. Bartocci, F. Masetti, U. Mazzucato, A. Spalletti, I. Baraldi and F. Momicchioli, Photophysical and theoretical studies of photoisomerism and rotamerism of trans-styrylphenanthrenes, J. Phys. Chem., 1987, 91, 4733–4743.

    Article  CAS  Google Scholar 

  20. J. D. McGhee and P. H. von Hippel, Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice, J. Mol. Biol., 1974, 86, 469–489.

    Article  CAS  Google Scholar 

  21. U. Mazzucato and F. Momicchioli, Rotational isomerism in trans-1,2-diarylethylenes, Chem. Rev., 1991, 91, 1679–1719

    Article  CAS  Google Scholar 

  22. G. Bartocci, A. Spalletti and U. Mazzucato, Conformational aspects in organic photochemistry, in J. Waluk (ed.), Conformational Analysis of Molecules in Excited States, Wiley-VCH, New York, 2000, ch. 5, and references cited therein.

    Google Scholar 

  23. C. G. Fortuna, C. Bonaccorso, F. Qamar, A. Anu, I. Ledoux and G. Musumarra, Synthesis and NLO properties of new trans 2-(thiophen-2-yl)vinyl heteroaromatic iodides, Org. Biomol. Chem., 2011, 9, 1608–1613.

    Article  CAS  Google Scholar 

  24. H. Görner and D. Schulte-Frohlinde, The role of triplet states in the transcis photoisomerization of quaternary salts of 4-nitro-4′-azastilbene and their quinolinium analogues. 6, J. Phys. Chem., 1985, 89, 4105–4112.

    Article  Google Scholar 

  25. H. Görner, Cis-trans photoisomerizatrion of 1-(9-anthryl)-2-phenylethylenes: effects of substitution and solvent polarity, J. Photochem. Photobiol., A, 1988, 43, 263–289

    Article  Google Scholar 

  26. L. Sun and H. Görner, Excited-state properties of trans-1-(9-anthryl)-2-(4-R-phenyl)ethylenes with electron-donating and -accepting substituents (R = N(CH3)2, OCH3, CH3, Br, CN, and NO2), J. Phys. Chem., 1993, 97, 11186–11193.

    Article  CAS  Google Scholar 

  27. B. Nordén, M. Kubista and T. Kurucsev, Linear dichroism of nucleic acids, Q. Rev. Biophys., 2009, 25, 51–171

    Article  Google Scholar 

  28. B. Nordén and K. Kuricsev, Analyzing DNA complexes by circular and linear dichroism, J. Mol. Recognit., 1994, 7, 141–156

    Article  Google Scholar 

  29. P. Colson, C. Bailly and C. Houssier, Electric linear dichroism as a new tool to study sequence preference in drug binding to DNA, Biophys. Chem., 1996, 58, 125–140.

    Article  CAS  Google Scholar 

  30. L. Dalla Via, O. Gia, S. Marciani Magno, A. Da Settimo, A. M. Marini, G. Primofiore, F. Da Settimo and S. Salerno, Synthesis, in vitro antiproliferative activity and DNA interactions of benzimi-dazoquinazoline derivatives as potential anti-tumor agents, Farmaco, 2001, 56, 159–167

    Article  CAS  Google Scholar 

  31. L. Dalla Via, O. Gia, S. Marciani Magno, A. Da Settimo, G. Primofiore, F. Da Settimo and F. Simorini, Dialkylaminoalkylindolo-naphthyridine as potential antitumor agents: synthesis, citotoxicity and DNA binding properties, Eur. J. Med. Chem., 2002, 37, 475–486.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Spalletti.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c1pp05214d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzoli, A., Carlotti, B., Bonaccorso, C. et al. Photochemistry and DNA-affinity of some pyrimidine-substituted styryl-azinium iodides. Photochem Photobiol Sci 10, 1830–1836 (2011). https://doi.org/10.1039/c1pp05214d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05214d

Navigation