Skip to main content

Advertisement

Log in

Inactivation of Enterococcus faecalis by TiO2-mediated UV and solar irradiation in water and wastewater: culture techniques never say the whole truth

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this work, the disinfection efficiency of water and secondary treated wastewater by means of UV-A, UV-C and solar irradiation in the presence or absence of TiO2, using a reference strain of Enterococcus faecalis as faecal indicator, was evaluated. Operating parameters such as TiO2 loading (0-1500 mg L−1), initial bacterial concentration (2 × 102-108 CFU mL−1) and treatment time (up to 120 min) were assessed concerning their impact on disinfection. E. faecalis inactivation was monitored by the conventional culture method and real-time PCR. Regarding photocatalytic treatment, disinfection efficiency was improved by increasing TiO2 concentration and bacterial inactivation took place in relatively short treatment times. Comparing the three disinfection methods, it was observed that UV-C irradiation yielded a better efficiency during water treatment than UV-A and solar irradiation. Furthermore, UV-A was more efficient than solar irradiation in the presence of the same loading of TiO2. Regarding real wastewater, it was observed that only UV-C irradiation was capable of totally inactivating E. faecalis population in a short time. Screening the results obtained from both applied techniques (culture method and real-time PCR), there was a discrepancy, regarding the recorded time periods of total bacterial inactivation. Real-time PCR data revealed that longer periods are needed for 100% bacterial reduction during the treatments tested compared to the estimated time by culture method. This is probably attributed to the phenomenon of “viable but not culturable bacteria”, caused by stressed conditions induced during disinfection experiments. Taking into account the contrast of results and in order to perform a thorough evaluation of disinfection techniques, conventional culture method should be accompanied by a DNA-based method. According to our findings, real-time PCR proved to be a reliable and accurate molecular tool for the identification and quantification of bacterial indicators, like E. faecalis, in aquatic samples after disinfection treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco and W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends, Catal. Today, 2009, 147, 1–59.

    Article  CAS  Google Scholar 

  2. M. N. Chong, B. Jin, C. W. K. Chow and C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res., 2010, 44, 2997–3027.

    Article  CAS  Google Scholar 

  3. C. M. Davies, D. J. Roser, A. J. Feitz and N. J. Ashbolt, Solar radiation disinfection of drinking water at temperate latitudes: Inactivation rates for an optimised reactor configuration, Water Res., 2009, 43, 643–652.

    Article  CAS  Google Scholar 

  4. R. M. Maier, I. L. Pepper and C. P. Gerba, in Environmental Microbiology, Academic Press, Elsevier, 2nd edn, 2009, ch. 26, pp. 539–545.

    Google Scholar 

  5. T. Westrell, O. Bergstedt, T. A. Stenstrom and N. J. Ashbolt, A theoretical approach to assess microbial risks due to failures in drinking water systems, Int. J. Environ. Health Res., 2003, 13, 181–197.

    Article  CAS  Google Scholar 

  6. J. Koivunen and H. Heinonen-Tanski, Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments, Water Res., 2005, 39, 1519–1526.

    Article  CAS  Google Scholar 

  7. N. Lydakis-Simantiris, D. Riga, E. Katsivela, D. Mantzavinos and N. P. Xekoukoulotakis, Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis, Desalination, 2010, 250, 351–355.

    Article  CAS  Google Scholar 

  8. C. Jungfer, T. Schwartz and U. Obst, UV-induced dark repair mechanisms in bacteria associated with drinking water, Water Res., 2007, 41, 188–196.

    Article  CAS  Google Scholar 

  9. M. Guo, H. Hu, J. R. Bolton and M. G. El-Din, Comparison of low- and medium-pressure ultraviolet lamps: Photoreactivation of Escherichia coli and total coliforms in secondary effluents of municipal wastewater treatment plants, Water Res., 2009, 43, 815–821.

    Article  CAS  Google Scholar 

  10. R. P. Sinha and D. P. Häder, UV-induced DNA damage and repair: a review, Photochem. Photobiol. Sci., 2002, 1, 225–236.

    Article  CAS  Google Scholar 

  11. A. G. Rincón and C. Pulgarin, Field solar E. coli inactivation in the absence and presence of TiO2: Is UV solar dose an appropriate parameter for standardization of water solar disinfection?, Sol. Energy, 2004, 77, 635–648.

    Article  Google Scholar 

  12. A. K. Benabbou, Z. Derriche, C. Felix, P. Lejeune and C. Guillard, Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation, Appl. Catal., B, 2007, 76, 257–263.

    Article  CAS  Google Scholar 

  13. A. Paleologou, H. Marakas, N. P. Xekoukoulotakis, A. Moya, Y. Vergara, N. Kalogerakis, P. Gikas and D. Mantzavinos, Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation, Catal. Today, 2007, 129, 136–142.

    Article  CAS  Google Scholar 

  14. L. Heijnen and G. Medema, Method for rapid detection of viable Escherichia coli in water using real-time NASBA, Water Res., 2009, 43, 3124–3132.

    Article  CAS  Google Scholar 

  15. R. V. Grieken, J. Marugán, C. Pablos, L. Furones and A. López, Comparison between the photocatalytic inactivation of Gram-positive E. faecalis and Gram-negative E. coli faecal contamination indicator microorganisms, Appl. Catal., B, 2010, 100, 212–220.

    Article  Google Scholar 

  16. J. A. Herrera Melián, J. M. Doña Rodríguez, A. Viera Suárez, E. Tello Rendón, C. Valdés do Campo, J. Arana and J. Pérez Peña, The photocatalytic disinfection of urban waste waters, Chemosphere, 2000, 41, 323–327.

    Article  Google Scholar 

  17. K. Backhaus, J. Marugán, R. V. Grieken and C. Sordo, Photocatalytic inactivation of E. faecalis in secondary wastewater plant effluents, Water Sci. Technol., 2010, 61, 2355–2361.

    Article  CAS  Google Scholar 

  18. M. J. Figueras and J. J. Borrego, New perspectives in monitoring drinking water microbial quality, Int. J. Environ. Res. Public Health, 2010, 7, 4179–4202.

    Article  Google Scholar 

  19. M. M. Lleo, B. Bonato, M. C. Tafi, C. Signoretto, C. Pruzzo and P. Canepari, Molecular vs. culture methods for the detection of bacterial faecal indicators in groundwater for human use, Lett. Appl. Microbiol., 2005, 40, 289–294.

    Article  CAS  Google Scholar 

  20. I. Brettar and M. G. Höfle, Molecular assessment of bacterial pathogens - a contribution to drinking water safety, Curr. Opin. Biotechnol., 2008, 19, 274–280.

    Article  CAS  Google Scholar 

  21. L. A. Bjergbæk and P. Roslev, Formation of nonculturable Escherichia coli in drinking water, J. Appl. Microbiol., 2005, 99, 1090–1098.

    Article  Google Scholar 

  22. A. Muela, C. Seco, E. Camafeita, I. Arana, M. Orruño, J. A. López and I. Barcina, Changes in Escherichia coli outer membrane subproteome under environmental conditions inducing the viable but nonculturable state, FEMS Microbiol. Ecol., 2008, 64, 28–36.

    Article  CAS  Google Scholar 

  23. E. Frahm and U. Obst, Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples, J. Microbiol. Methods, 2003, 52, 123–131.

    Article  CAS  Google Scholar 

  24. N. Wéry, C. Lhoutellier, F. Ducray, J. P. Delgenès and J. J. Godon, Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR, Water Res., 2008, 42, 53–62.

    Article  Google Scholar 

  25. APHA, Standard Methods for the Examination of Water and Wastewater, 20th edn, American Public Health Association, Washington, DC, 1999.

    Google Scholar 

  26. D. Y. Lee, H. Lauder, H. Cruwys, P. Falletta and L. A. Beaudette, Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens, Sci. Total Environ., 2008, 398, 203–211.

    Article  CAS  Google Scholar 

  27. J. M. Williams, M. Trope, D. J. Caplan and D. C. Shugars, Detection and quantitation of E. faecalis by Real-time PCR (qPCR), Reverse Transcription-PCR (RT-PCR), and cultivation during endodontic treatment, Clin. Res., 2006, 32, 715–721.

    Google Scholar 

  28. M. A. Rauf, M. A. Meetani and S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination, 2011, 276, 13.

    Article  CAS  Google Scholar 

  29. G. Gogniat, M. Thyssen, M. Denis, C. Pulgarin and S. Dukan, The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, FEMS Microbiol. Lett., 2006, 258, 18–24.

    Article  CAS  Google Scholar 

  30. M. Lebuhn, M. Effenberger, G. Garcés, A. Gronauer and P. A. Wilderer, Evaluating real-time PCR for the quantification of distinct pathogens and indicator organisms in environmental samples, Water Sci. Technol., 2004, 50, 263–270.

    Article  CAS  Google Scholar 

  31. E. Viau and J. Peccia, Evaluation of the enterococci indicator in biosolids using culture-based and quantitative PCR assays, Water Res., 2009, 43, 4878–4887.

    Article  CAS  Google Scholar 

  32. J. Süb, S. Volz, U. Obst and T. Schwartz, Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection, Water Res., 2009, 43, 3705–3716.

    Article  Google Scholar 

  33. K. Rudi, I. Hagen, B. C. Johnsrud, G. Skjefstad and I. Tryland, Different Length (DL) qPCR for quantification of cell killing by UV-induced DNA damage, Int. J. Environ. Res. Public Health, 2010, 7, 3376–3381.

    Article  CAS  Google Scholar 

  34. R. T. Noble, A. D. Blackwood, J. F. Griffith, C. D. McGee and S. B. Weisberg, Comparison of rapid quantitative PCR-based and conventional culture-based methods for enumeration of Enterococcus spp. and Escherichia coli in recreational waters, Appl. Environ. Microbiol., 2010, 76, 7437–7443.

    Article  CAS  Google Scholar 

  35. I. Bertrand, C. Gantzer, T. Chesnot and J. Schwartzbrod, Improved specificity for Giardia lamblia cyst quantification in wastewater by development of a real-time PCR method, J. Microbiol. Methods, 2004, 57, 41–53.

    Article  CAS  Google Scholar 

  36. C. Maya, N. Beltran, B. Jimenez and P. Bonilla, Evaluation of the UV disinfection process in bacteria and amphizoic amoeba inactivation, Water Sci. Technol.: Water Supply, 2003, 3, 285–291.

    CAS  Google Scholar 

  37. Y. Gilboa and E. Friedler, UV disinfection of RBC-treated light greywater effluent: kinetics, survival and regrowth of selected mi-croorgnisms, Water Res., 2008, 42, 1043–1050.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venieri, D., Chatzisymeon, E., Gonzalo, M.S. et al. Inactivation of Enterococcus faecalis by TiO2-mediated UV and solar irradiation in water and wastewater: culture techniques never say the whole truth. Photochem Photobiol Sci 10, 1744–1750 (2011). https://doi.org/10.1039/c1pp05198a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05198a

Navigation