Skip to main content
Log in

Photocatalytic inactivation of bacteriophages by TiO2-coated glass plates under low-intensity, long-wavelength UV irradiation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The International Organization for Standardization (ISO) was used to evaluate antibacterial activity by titanium dioxide (TiO2) photocatalysis since 2006. We evaluated photocatalytic inactivation of Qβ and T4 bacteriophages induced by low-intensity, long-wavelength ultraviolet A (UVA; 0.1 mW cm−2 and 0.001 mW cm−2) irradiation on a TiO2-coated glass plate using the ISO methodology. The results indicated that both bacteriophages were inactivated at 0.001 mW cm−2 UVA. The intensity of UV light, including long-wavelength light (UVA), is very low in an actual indoor environment. Thus, TiO2 photocatalysis can be beneficial for inactivating viruses in an indoor environment. Experiments using qPCR and bovine serum albumin degradation assume that viral inactivation is caused by outer viral protein disorder and not by viral RNA reduction by reactive oxygen species produced during TiO2 photocatalysis. Furthermore, we showed that the ISO methodology for standard testing of antibacterial activity by TiO2 photocatalysis can be applied to assess antiviral activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  2. A. Fujishima, A. Xintong and D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 2008, 63, 515–582.

    Article  CAS  Google Scholar 

  3. C. Wei, W. Y. Lin, Z. Zaianl, N. E. Williams, K. Zhu, A. P. Kruzic, R. L. Smith and K. Rajeshwar, Bactericidal activity of TiO2 photocatalyst in aqueous media: Toward a solar-assisted water disinfection system, Environ. Sci. Technol., 1994, 28, 934–938.

    Article  CAS  Google Scholar 

  4. H. Ryu, D. Gerrity, J. C. Crittenden and M. Abbaszadegan, Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation, Water Res., 2008, 42, 1523–1530.

    Article  CAS  Google Scholar 

  5. K. Sunada, Y Kikuchi, K. Hashimoto and A. Fujishima, Bactericidal and detoxification effects of TiO2 thin film photocatalysts, Environ. Sci. Technol., 1998, 32, 726–728.

    Article  Google Scholar 

  6. Y. Ohko, Y. Utsumi, C. Niwa, T. Tatsuma, K. Kobayakawa, Y. Satoh, Y. Kubota and A. Fujishima, Self-sterilizing and self-cleaning silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work, J. Biomed. Mater. Res., 2001, 58, 97–101.

    Article  CAS  Google Scholar 

  7. Y. Yao, Y. Ohko, Y. Sekiguchi, A. Fujishima and Y. Kubota, Self-sterilization using silicone catheters coated with Ag and TiO2 nanocom-posite thin film, J. Biomed. Mater. Res. B, 2007, 85, 453–460.

    Google Scholar 

  8. Y. Sekiguchi, Y. Yao, Y. Ohko, K. Tanaka, T. Ishido, A. Fujishima and Y. Kubota, Self-sterilizing catheters with titanium dioxide photocata-lyst thin films for clean intermittent catheterization: Basis and study of clinical use, International Journal of Urology, 2007, 14, 426–430.

    Article  CAS  Google Scholar 

  9. Y. Li, P. Leung, Y. Yao, Q. W. Song and E. Newton, Antimicrobial effect of surgical masks coated with nanoparticles, J. Hosp. Infect., 2006, 62, 58–63.

    Article  CAS  Google Scholar 

  10. H. Nakamura, M. Tanaka, S. Shinohara, M. Gotoh and I. Karube, Development of a self-sterilizing lancet coated with a titanium dioxide photocatalytic nano-layer for self-monitoring of blood glucose, Biosens. Bioelectron., 2007, 22, 1920–1925.

    Article  CAS  Google Scholar 

  11. K. Sunada, T. Watanabe and K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film, J. Photochem. Photobiol., A, 2003, 156, 227–233.

    Article  CAS  Google Scholar 

  12. T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake, Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 1985, 29, 211–214.

    Article  CAS  Google Scholar 

  13. T. Matsunaga, R. Tomoda, T. Nakajima, N. Nakamura and T. Komine, Continuous-sterilization system that uses photosemiconductor powders, Appl. Environ. Microbiol., 1988, 54, 1330–1333.

    Article  CAS  Google Scholar 

  14. J. C. Ireland, P. Klostermann, E. W. Rice and R. M. Clark, Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation, Appl. Environ. Microbiol., 1993, 59, 1668–1670.

    Article  CAS  Google Scholar 

  15. M. Cho, H. Chung, W. Choi and J. Yoon, Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection, Appl. Environ. Microbiol., 2005, 71, 270–275.

    Article  CAS  Google Scholar 

  16. M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke and P. Schmuki, TiO2 nanotubes: Photocatalyst for cancer cell killing, Phys. Status Solidi RRL, 2008, 2, 194–196.

    Article  CAS  Google Scholar 

  17. R. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto and A. Fujishima, Induction of cytotoxicity by photoexcited TiO2 particles, Cancer Res., 1992, 52, 2346–2348.

    CAS  PubMed  Google Scholar 

  18. P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum and W. A. Jacoby, Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl. Environ. Microbiol., 1999, 65, 4094–4098.

    Article  CAS  Google Scholar 

  19. S. Lee, M. Nakamura and S. Ohgaki, Inactivation of phage Q-beta by 254 nm UV light and titanium dioxide photocatalyst, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 1988, 33, 1643–1655.

    Article  Google Scholar 

  20. S. Lee, K. Nishida, M. Otaki and S. Ohgaki, Photocatalytic inactivation of phage Qb by immobilized titanium dioxide mediated photocatalyst, Water Sci. Technol., 1997, 35, 101–106.

    Article  CAS  Google Scholar 

  21. D. Gerrity, H. Ryu, J. Crittenden and M. Abbaszadegan, Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2008, 43, 1261–1270.

    Article  CAS  Google Scholar 

  22. I. Paspaltsis, K. Kotta, R. Lagoudaki, N. Grigoriadis, I. Poulios and T. Sklaviadis, Titanium dioxide photocatalytic inactivation of prions, J. Gen. Virol., 2006, 87, 3125–3130.

    Article  CAS  Google Scholar 

  23. H. Shima (ed.), JIS R 1702. Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for antibacterial activity of photocatalytic products under photoirradiation and efficacy. Japanese Standards Association, Tokyo, Japan, 2006.

  24. ISO 27447: 2009(E). Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for antibacterial activity of semiconducting photocatalytic materials, Geneva, Switzerland, 2009.

    Google Scholar 

  25. N. Kashige, Y. Karita, Y. Nakashima, F. Miake and K. Watanabe, Mechanism of the photocatalytic inactivation of Lactobacillus casei phage PL-1 by mania thin film, Curr. Microbiol., 2001, 42, 184–189.

    Article  CAS  Google Scholar 

  26. H. Katayama, A. Shimasaki and S. Ohgaki, Development of virus concentration method using negatively charged membrane by alkaline elution after acid rinse, Journal of Japan Society on Water Environment, 2002, 25, 469–475, in Japanese.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Ishiguro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiguro, H., Nakano, R., Yao, Y. et al. Photocatalytic inactivation of bacteriophages by TiO2-coated glass plates under low-intensity, long-wavelength UV irradiation. Photochem Photobiol Sci 10, 1825–1829 (2011). https://doi.org/10.1039/c1pp05192j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05192j

Navigation