Skip to main content
Log in

Mechanism of dioxindolylalanine formation by singlet molecular oxygen-mediated oxidation of tryptophan residues

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The singlet molecular oxygen-oxidation of tryptophan generates diastereoisomeric dioxindolylalanine (diOia) along with hydroperoxides, alcohols and carbonyl compounds. Mechanistic investigations based on isotopic labeling and MS/MS analyses support diOia formation through a dioxetane intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. § diOia are diastereomeric α-amino-2,3-dihydro-3-hydroxy-2-oxo-1H-indole-3-propanoic acids. Diastereoisomerism is possible because of a second asymmetric center, the indoline C3 atom. The more polar isomer (fast elution in a C18 column) was identified as R,S diOia and the stereochemistry was deduced by a comparison with trans 2-carboxy-3a-hydroperoxy-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (in this isomer, the hydroperoxy group has a trans configuration in relation to the carboxylic acid group, see ref. 2). The assignment was possible since R,S diOia is detected in trans WOOH samples submitted to long term storage. Similarly, R,R diOia was identified as the less polar isomer, with its stereochemistry being obtained from that of the cis WOOH isomer.

  2. ¶ Studying the mechanism of pyrrole photooxygenation, it was found that the reaction with water is a preferred mechanism only when water is also the solvent (see ref. 11). However, for the case of pyrroles, a putative dioxetane arises from an endoperoxide rearrangement, so whether water is involved in the nucleophilic decomposition of an endoperoxide or its rearranged dioxetane is unknown.

  3. This is an effect also observed for the cis-hydroperoxide isomer, which is less stable than trans-WOOH.

  4. M. Nakagawa, H. Watanabe, S. Kodato, H. Okajima, T. Hino, J. L. Flippen and B. Witkop, A valid model for the mechanism of oxidation of tryptophan to formylkynurenine—25 years later, Proc. Natl. Acad. Sci. U. S. A., 1977, 74, 4730–4733.

    Article  CAS  Google Scholar 

  5. G. E. Ronsein, M. C. B. Oliveira, S. Miyamoto, M. H. G. Medeiros and P. Di Mascio, Tryptophan oxidation by singlet molecular oxygen [O21Δg)]: mechanistic studies using 18O-labeled hydroperoxides, mass spectrometry, and light emission measurements, Chem. Res. Toxicol., 2008, 21, 1271–1283.

    Article  CAS  Google Scholar 

  6. S. Gurnani, M. Arifuddin and K. T. Augusti, Effect of visible light on amino acids—I. Tryptophan, Photochem. Photobiol, 1966, 5, 495–505.

    Article  CAS  Google Scholar 

  7. I. Saito, T. Matsuura, M. Nakagawa and T. Hino, Peroxidic intermediates in photosensitized oxygenation of tryptophan derivatives, Acc. Chem. Res., 1977, 10, 346–352.

    Article  CAS  Google Scholar 

  8. M. Gracanin, C. L. Hawkins, D. I. Pattison and M. J. Davies, Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products, Free Radical Biol. Med., 2009, 47, 92–102.

    Article  CAS  Google Scholar 

  9. A. M. Bond, D. J. Tucker, Z. Qing and D. E. Rivett, Determination of the redox active forms of oxindolylalanine and peptides of kynurenine on the basis of electrochemical studies at mercury electrodes in aqueous media, J. Electroanal. Chem., 1991, 315, 125–141.

    Article  CAS  Google Scholar 

  10. H. Hock and O. Schrader, Der mechanismus der autoxydation einfacher kohlenwasserstoffe als beitrag zur autoxydation von brennstof-fen, Angew. Chem., Int. Ed., 1936, 49, 565–566.

    Google Scholar 

  11. H. Takeshita and T. Hatsui, Sensitized photoreduction of dioxetanes to cis-1,2-glycols: solvent and sensitizer dependencies on the singlet oxygen oxidation, J. Org. Chem., 1978, 43, 3080–3083.

    Article  CAS  Google Scholar 

  12. C. Pierlot, J. Aubry, K. Briviba, H. Sies and P. Di Mascio, Naphthalene endoperoxides as generators of singlet oxygen in biological media, Methods Enzymol, 2000, 319, 3–20.

    Article  CAS  Google Scholar 

  13. W. H. Fenical, D. R. Kearns and P. Radlick, Mechanism of the addition of 1Δg-excited oxygen to olefins. Evidence for a 1,2-dioxetane intermediate, J. Am. Chem. Soc, 1969, 91, 3396–3398.

    Article  CAS  Google Scholar 

  14. D. A. Lightner, G S. Bisacchi and R. D. Norris, On the mechanism of the sensitized photooxygenation of pyrroles, J. Am. Chem. Soc, 1976, 98, 802–807.

    Article  CAS  Google Scholar 

  15. W. Adam and M. Heil, Reaction of 1,2-dioxetanes with heteroatom nucleophiles: adduct formation by nucleophilic attack at the peroxide bond, J. Am. Chem. Soc, 1992, 114, 5591–5598.

    Article  CAS  Google Scholar 

  16. G E. Ronsein, M. C. B. Oliveira, M. H. G Medeiros and P. Di Mascio, Characterization of O2(1Δg)-derived oxidation products of tryptophan: a combination of tandem mass spectrometry analyses and isotopic labeling studies, J. Am. Soc. Mass Spectrom., 2009, 20, 188–197.

    Article  CAS  Google Scholar 

  17. A. A. Frimer, The reaction of singlet oxygen with olefins: the question of mechanism, Chem. Rev., 1979, 79, 359–387.

    Article  CAS  Google Scholar 

  18. H. H. Wasserman and S. Terao, Enamine singlet oxygen reactions— alpha-diketones from intermediate amino dioxetanes, Tetrahedron Lett., 1975, 16, 1735–1738.

    Article  Google Scholar 

  19. N. Kornblum and H. E. DeLaMare, The base catalyzed decomposition of a dialkyl peroxide, J. Am. Chem. Soc., 1951, 73, 880–881.

    Article  CAS  Google Scholar 

  20. W. Ando, J. Suzuki, T. Arai and T. Migita, Singlet oxygen reaction. 2. Alkylthiosubstituted ethylene, Tetrahedron, 1973, 29, 1507–1513.

    Article  CAS  Google Scholar 

  21. W. Ando, T. Saiki and T. Migita, Singlet oxygen reaction. 4. Pho-tooxygenation of enamines involving a 2-step cleavage of 1,2-dioxetane intermediate, J. Am. Chem. Soc., 1975, 97, 5028–5029.

    Article  CAS  Google Scholar 

  22. W. Baader, C. Stevani, and E. Bastos, Chemiluminescence of organic peroxides, in The Chemistry of Peroxides, ed. Z. Rappoport, John Wiley & Sons Ltd, New York, 2006, pp. 1211–1278.

    Chapter  Google Scholar 

  23. W. H. Richardson, G. Batinica, K. Janota-Perret, T. Miller and D. Shen, Excited state selectivity in the thermolysis of a 3,4-diaryl-3,4-dimethyl-1,2-dioxetane, J. Org. Chem., 1991, 56, 6140–6144.

    Article  CAS  Google Scholar 

  24. I. Saito, M. Imuta and T. Matsuura, Photoinduced reactions. LXV. Photosensitized oxygenation of 2-methylindoles, Chem. Lett., 1972, 1173–1176.

    Google Scholar 

  25. X. J. Zhang, C. S. Foote and S. I. Khan, Reactions of N-acylated indoles with singlet oxygen, J. Org. Chem., 1993, 58, 47–51.

    Article  CAS  Google Scholar 

  26. D. A. Lightner and C.-S. Pak, Dye-sensitized photooxygenation of tert-butylpyrroles, J. Org. Chem., 1975, 40, 2724–2728.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziella Eliza Ronsein.

Additional information

In memoriam of Prof. Giuseppe Cilento.

Electronic supplementary information (ESI) available: Detailed materials and methods description, and 1H NMR, 13C NMR and accurate mass spectral measurements. See DOI: 10.1039/c1pp05181d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronsein, G.E., Bof de Oliveira, M.C., Gennari de Medeiros, M.H. et al. Mechanism of dioxindolylalanine formation by singlet molecular oxygen-mediated oxidation of tryptophan residues. Photochem Photobiol Sci 10, 1727–1730 (2011). https://doi.org/10.1039/c1pp05181d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05181d

Navigation