Skip to main content

Advertisement

Log in

Simultaneously targeting mitochondria and endoplasmic reticulum by photodynamic therapy induces apoptosis in human lymphoma cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) and photodetection with protoporphyrin IX (PpIX) precursors have widely been used in the diseases with abnormally proliferative cells, but the mechanism of the modality is not fully understood yet. In this study 70-95% of apoptotic cells after PDT with PpIX precursor, hexaminolevulinate (HAL) in two human lymphoma cell lines, Namalwa and Bjab, were confirmed by fluorescence microscopy, electron microscopy and flow cytometry. HAL-derived PpIX was mainly distributed in the mitochondria and endoplasmic reticulum (ER), both of which were initial targets after light exposure causing two major pathways simultaneously involved in the apoptotic induction. One was the mitochondrial pathway including the release of cytochrome c, cleavage of caspases-9/-3, poly(ADP-ribose) polymerase and DNA fragmentation factor. The other was the ER stress-mediated pathway triggering a transient increase in the cytosolic Ca2+ level after photodamage to the ER calcium pump protein SERCA2. The released Ca2+ further initiated the caspase-8 cleavage. The use of both extracellular Ca2+ chelator EGTA and intracellular Ca2+ chelator BAPTA-AM confirmed that such cytosolic Ca2+ originated from the ER rather than extracellular Ca2+-containing medium. About 30% of the apoptosis was blocked with BAPTA-AM alone; while a complete inhibition of such apoptosis was achieved with a combination of the caspase-9 inhibitor Z-LEHD-FMK and caspase-8 inhibitor Z-IETD-FMK, thus quantifying each role of the mitochondrial and ER pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

Aminolevulinic acid

HAL:

Hexaminolevulinate

PDT:

Photodynamic therapy

PD:

Photodetection

PpIX:

Protoporphyrin IX

EGTA:

Ethylene glycol tetraacetic acid

ER:

Endoplasmic reticulum

TdT:

Terminal deoxynucleotide transferase

FITC:

Fluorescein isothiocyanate

BSA:

Bovine serum albumin

References

  1. Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug and K.-E. Giercksky, et al., 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges, Cancer, 1997, 79, 2282–2308.

    Article  CAS  PubMed  Google Scholar 

  2. J. M. Gaullier, K. Berg, Q. Peng, H. Anholt, P. K. Selbo and L. W. Ma, et al., Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture, Cancer Res., 1997, 57, 1481–1486.

    CAS  PubMed  Google Scholar 

  3. T. J. Dougherty, C. J. Gomer and B. W. Henderson, et al., Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    CAS  PubMed  Google Scholar 

  4. Q. Peng, Editorial: Photodynamic therapy and detection, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 1–5.

    Article  PubMed  Google Scholar 

  5. N. A. Thornberry and Y. Lazebnik, Caspases: Enemies within, Science, 1998, 281, 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  6. H. Tajiri, A. Hayakawa, Y. Matsumoto, I. Yokoyama and S. Yoshida, Changes in intracellular Ca2+ concentrations related to PDT-induced apoptosis in photosensitized human cancer cells, Cancer Lett., 1998, 128, 205–210.

    Article  CAS  PubMed  Google Scholar 

  7. D. Kessel and Y. Luo, Photodynamic therapy: a mitochondrial inducer of apoptosis, Cell Death Differ., 1999, 6, 28–35.

    Article  CAS  PubMed  Google Scholar 

  8. P. T. Daniel, Dissecting the pathways to death, Leukemia, 2000, 14, 2035–2044.

    Article  CAS  PubMed  Google Scholar 

  9. D. J. Granville and D. W. Hunt, Porphyrin-mediated photosensitization—taking the apoptosis fast lane, Curr. Opin. Drug Discov. Devel., 2000, 3, 232–243.

    CAS  PubMed  Google Scholar 

  10. N. L. Oleinick, R. L. Morris and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why and how, Photochem. Photobiol. Sci., 2002, 1, 1–2.

    Article  CAS  PubMed  Google Scholar 

  11. D. Kessel, Death pathways associated with photodynamic therapy, Med. Laser Appl., 2006, 21, 219–224.

    Article  PubMed  PubMed Central  Google Scholar 

  12. I. Schmid, C. Uittenbogaart and B. D. Jamieson, Live-cell assay for detection of apoptosis by dual-laser flow cytometry using Hoechst 33342 and 7-amino-actinomycin D, Nat. Protoc., 2007, 1, 187–190.

    Article  Google Scholar 

  13. B. Krammer and K. Uberriegler, In vitro investigation of ALA-induced protoporphyrin IX, J. Photochem. Photobiol., B, 1996, 36, 121–126.

    Article  CAS  Google Scholar 

  14. E. Buytaert, M. Dewaele and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochim. Biophys. Acta, 2007, 1776, 86–107.

    CAS  PubMed  Google Scholar 

  15. B. Chen, T. Roskams, Y. Xu, P. Agostinis and P. A. M. de Witte, Photodynamic therapy with hypericin induces vascular damage and apoptosis in the RIF-1 mouse tumor model, Int. J. Cancer, 2002, 98, 284–290.

    Article  CAS  PubMed  Google Scholar 

  16. D. J. Granville, H. Jiang, B. M. McManus and D. W. Hunt, Fas ligand and TRAIL augment the effect of photodynamic therapy on the induction of apoptosis in JURKAT cells, Int. Immunopharmacol., 2001, 1, 1831–1840.

    Article  CAS  PubMed  Google Scholar 

  17. B. Nagy, W. C. Yeh, T. W. Mak, S. M. Chiu and D. Separovic, FADD null mouse embryonic fibroblasts undergo apoptosis after photosensitization with the silicon phthalocyanine Pc 4, Arch. Biochem. Biophys., 2001, 385, 194–202.

    Article  CAS  PubMed  Google Scholar 

  18. H. Takahashi, Y. Itoh and Y. Miyauchi, et al., Activation of two caspase cascades, caspase 8/3/6 and caspase 9/3/6 during photodynamic therapy using a novel photosensitizer, ATX-S10(Na), in normal human keratinocytes, Arch. Dermatol. Res., 2003, 295, 242–248.

    Article  CAS  PubMed  Google Scholar 

  19. A. Carpinteiro, C. Dumitru, M. Schenck and E. Gulbins, Ceramide-induced cell death in malignant cells, Cancer Lett., 2008, 264, 1–10.

    Article  CAS  PubMed  Google Scholar 

  20. D. Grebenova, K. Kuzelova and K. Smetana, et al., Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells, J. Photochem. Photobiol., B, 2003, 69, 71–85.

    Article  CAS  Google Scholar 

  21. A. B. Berger, K. B. Sexton and M. Bogyo, Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity, Cell Res., 2006, 16, 961–963.

    Article  CAS  PubMed  Google Scholar 

  22. G. P. McStay, G. S. Salvesen and D. R. Green, Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways, Cell Death Differ., 2007, 15, 322–331.

    Article  PubMed  Google Scholar 

  23. D. Kessel and N. L. Oleinick, Initiation of autophagy by photodynamic therapy, Methods Enzymol., 2009, 453, 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. M. Yow, N. K. Mak, A. W. Leung and Z. Huang, Induction of early apoptosis in human nasopharyngeal carcinoma cells by mTHPC-mediated photocytotoxicity, Photodiagn. Photodyn. Ther., 2009, 6, 122–127.

    Article  CAS  Google Scholar 

  25. J. Finke, W. Lange, R. Mertelsmann and G. Dolken, BCL-2 induction is part of the strategy of Epstein-Barr virus, Leuk. Lymphoma, 1994, 12, 413–419.

    Article  CAS  PubMed  Google Scholar 

  26. Z. Malik and M. Djaldetti, Destruction of erythroleukemia, myelocytic leukemia and Burkitt lymphoma cells by photoactivated protoporphyrin, Int. J. Cancer, 1980, 26, 495–500.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzidi, S., Čunderlíková, B., Więdłocha, A. et al. Simultaneously targeting mitochondria and endoplasmic reticulum by photodynamic therapy induces apoptosis in human lymphoma cells. Photochem Photobiol Sci 10, 1773–1782 (2011). https://doi.org/10.1039/c1pp05169e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05169e

Navigation