Skip to main content
Log in

Hypocrellin-B acetate as a fluorogenic substrate for enzyme-assisted cell photosensitization

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photosensitizing molecules (PSs) undergo chemico-physical changes upon addition of suitable substituents, influencing both their photophysical properties and their ability to accumulate into cells. Once inside the cells, the modified PS acts as a fluorogenic substrate: the added substituent is removed by a specific enzyme, restoring the native PS in subcellular sensitive sites. We investigated the photophysical properties and interaction with HeLa cells of Hypocrellin-B (HypB), as native molecule and upon acetate-group addition (HypB-Ac). Chemical modification alters both absorption and fluorescence features of HypB; consequently, the dynamics of the enzyme hydrolysis of HypB-Ac can be monitored through restoring the native HypB spectral properties. At the cellular level, only the HypB emission signal was detected within 5 min of incubation with either HypB or HypB-Ac, allowing a direct comparison of the time courses of their intracellular accumulation. Plateau values were reached within 15 min of incubation with both compounds, the emission signals being significantly higher in HypB-Ac than in HypB treated cells. Consistently, imaging showed a rapid appearance of red fluorescence in the cytoplasm, with more abundant bright spots in HypB-Ac treated cells. Both compounds did not induce dark toxicity at concentrations up to 1 × 10−6 M, while upon irradiation at 480 nm phototoxicity was significantly higher for cells exposed to HypB-Ac than for HypB-loaded cells. These findings suggest an improved efficacy of acetylated HypB to be internalized by cells through membrane trafficking, with a preferential interaction of the photoactive molecules on sensitive intracellular sites. After irradiation, in HypB-Ac treated cells, prominent disorganization of several cytoplasmic organelles such as the endoplasmic reticulum, Golgi apparatus, lysosomes, microfilaments and microtubules were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Oleinick, R. L. Morris and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  Google Scholar 

  2. D. Kessel and R. D. Poretz, Sites of photodamage induced by photodynamic therapy with a chlorin e6 triacetoxymethyl ester (CAME), Photochem. Photobiol., 2000, 71, 94–96.

    Article  CAS  Google Scholar 

  3. M. H. Teiten, S. Marchal, M. A. D’Hallewin, F. Guillemin and L. Bezdetnaya, Primary photodamage sites and mitochondrial events after Foscan photosensitization of MCF-7 human breast cancer cells, Photochem. Photobiol., 2003, 78, 9–14.

    Article  CAS  Google Scholar 

  4. J. Moan and K. Berg, The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 1991, 53, 549–553.

    Article  CAS  Google Scholar 

  5. Z. Diwu and J. W. Lown, Hypocrellin and their use in photosensitization, Photochem. Photobiol., 1990, 52, 609–616.

    Article  CAS  Google Scholar 

  6. G. Ma, S. I. Khan, M. R. Jacob, B. L. Tekwani, Z. Li, D. S. Pasco, L. A. Walker and I. A. Khan, Antimicrobial and antileishmanial activities of hypocrellins A and B, Antimicrob. Agents Chemother., 2004, 48, 4450–4452.

    Article  CAS  Google Scholar 

  7. Z. Diwu and J. W. Lown, Photosensitization by anticancer agents 12. Perylene quinonoid pigments, a novel type of singlet oxygen sensitizer, J. Photochem. Photobiol., A, 1992, 64, 273–287.

    Article  CAS  Google Scholar 

  8. Z. Diwu and J. W. Lown, Photosensitization with anticancer agents 15. Perylenequinonoid pigments as new potential photodynamic therapeutic agents: formation of semiquinone radicals and reactive oxygen species on illumination, J. Photochem. Photobiol., B, 1993, 18, 131–143.

    Article  CAS  Google Scholar 

  9. Z. Diwu, Novel therapeutic and diagnostic applications of hypocrellins and hypericins, Photochem. Photobiol., 1995, 61, 529–39.

    Article  CAS  Google Scholar 

  10. H. Yang and F. Huang, Quantum chemical and statistical study of hypocrellin dyes with phototoxicity against tumor cells, Dyes Pigm., 2007, 74, 416–423.

    Article  CAS  Google Scholar 

  11. W. Nenghui and Z. Zhiyi, Relationship between photosensitizing activities and chemical structure of hypocrellin A and B, J. Photochem. Photobiol., B, 1992, 14, 207–217.

    Article  CAS  Google Scholar 

  12. E. P. Estey, K. Brown, Z. Diwu, J. Liu, W. Lown, G. G. Miller, J. Tulip and M. McPhee, Hypocrellins as photosensitizers for photodynamic therapy: a screening evaluation and pharmacokinetic study, Cancer Chemother. Pharmacol., 1996, 37, 343–350.

    Article  CAS  Google Scholar 

  13. G. G. Miller, K. Brown, M. Ballangrud, O. Barajas, Z. Xiao, J. Tulip, J. W. Lown, J. Leithoff, M. J. Allalunis-Turner, R. Mehta and R. B. Moore, Preclinical assessment of hypocrellin B and hypocrellin B derivatives for photodynamic therapy of cancer: progress update, Photochem. Photobiol., 1997, 65, 714–722.

    Article  CAS  Google Scholar 

  14. Z. Lu, Y. Tao, Z. Zhou, J. Zhang, C. Li, L. Ou and B. Zhao, Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment, Free Radical Biol. Med., 2006, 41, 1590–1605.

    Article  CAS  Google Scholar 

  15. I. J. Jiang, The structure, properties, photochemical reactions and reaction mechanisms of hypocrellin (I), Chin. Sci. Bull., 1989, 21, 1608–1619.

    Google Scholar 

  16. L. Jiang and Y. He, Photophysics photochemistry and photobiology of hypocrellin photosensitizers, Chin. Sci. Bull., 2001, 46, 6–16.

    Article  CAS  Google Scholar 

  17. H. Yuying, A. Jingyi and J. Luin, Effect of structural modifications on photosensitizing activities of hypocrellin dyes: EPR and spectrophotometric studies, Free Radical Biol. Med., 1999, 26, 1146–1157.

    Article  CAS  Google Scholar 

  18. H. Y. Lee, Z. X. Zhou, S. Chen, M. H. Zhang and T. Shen, New long-wavelength ethanolamino-substituted hypocrellin: Photodynamic activity and toxicity to MGC803 cancer cell, Dyes Pigm., 2006, 68, 1–10.

    Article  CAS  Google Scholar 

  19. X. Liu, J. Xie, L. Zhang, H. Chen, Y. Gu and J. Zhao, A novel hypocrellin B derivative designed and synthesized by taking consideration to both drug delivery and biological photodynamic activity, J. Photochem. Photobiol., B, 2009, 94, 171–178.

    Article  CAS  Google Scholar 

  20. L. Zhou, J. H. Zhou, C. Dong, F. Ma, S. H. Wei and J. Shen, Watersoluble hypocrellin A nanoparticles as a photodynamic therapy delivery system, Dyes Pigm., 2009, 82, 90–94.

    Article  CAS  Google Scholar 

  21. Y. Zhang, L. Song, J. Xie, H. Qiu, Y. Gu Y and J. Zhao, Novel surfactant-like hypocrellin dervivatives to achieve simultaneous drug delivery in blood plasma and cell uptake, Photochem. Photobiol., 2010, 86, 667–672.

    Article  CAS  Google Scholar 

  22. D. Bai, X. Xia, C. M. Yow, E. S. Chu and C. Xu, Hypocrellin Bencapsulated nanoparticle-mediated rev-caspase-3 gene transfection and photodynamic therapy on tumor cells, Eur. J. Pharmacol., 2011, 650, 496–500.

    Article  CAS  Google Scholar 

  23. Z. Zhou, L. Zhang, H. Liu, Q. Zhang, B. Liu, P. Ai, H. Ma, W. Liu, Z. Li, W. Sheng, Y. Zeng and R. Zhong, Photocytotoxicity of Hypocrellin B (HB) was enhanced by liposomalization in vitro, Int. J. Toxicol., 2011, 30, 174–180.

    Article  CAS  Google Scholar 

  24. G. G. Miller, K. Brown, R. B. Moore, Z. J. Diwu, J. Liu, L. Huang, J. W. Lown, D. A. Begg, V. Chlumecky, J. Tulip and M. S. McPhee, Uptake kinetics and intracellular localization of hypocrellin photosensitizers for photodynamic therapy: a confocal microscopy study, Photochem. Photobiol., 1995, 61, 632–638.

    Article  CAS  Google Scholar 

  25. S. M. Ali and M. Olivo, Efficacy of hypocrellin pharmacokinetics in phototherapy, Int. J. Cancer, 2002, 21, 1229–1237.

    CAS  Google Scholar 

  26. G. Bottiroli, A. C. Croce AC, P. Balzarini, D. Locatelli, P. Baglioni, P. Lo Nostro, M. Monici and R. Pratesi, Enzyme-assisted cell photosensitization: a proposal for an efficient approach to tumor therapy and diagnosis. The Rose Bengal fluorogenic substrate, Photochem. Photobiol., 1997, 66, 374–83.

    Article  CAS  Google Scholar 

  27. A. C. Croce, R. Supino, K. S. Lanza, D. Locatelli, P. Baglioni and G. Bottiroli, Photosensitizer accumulation in spontaneous multidrug resistant cells: a comparative study with Rhodamine 123, Rose Bengal acetate and Photofrin, Photochem. Photobiol. Sci., 2002, 1, 71–78.

    Article  CAS  Google Scholar 

  28. C. Soldani, M. G. Bottone, A. C. Croce, A. Fraschini, G. Bottiroli and C. Pellicciari, The Golgi apparatus is a primary site of intracellular damage after photosensitization with Rose Bengal acetate, Eur. J. Histochem., 2004, 48, 443–448.

    Article  CAS  Google Scholar 

  29. M. G. Bottone, C. Soldani, A. Fraschini, C. Alpini, A. C. Croce, G. Bottiroli and C. Pellicciari, Enzyme-assisted photosensitization with Rose Bengal acetate induces structural and functional alteration of mitochondria in HeLa cells, Histochem. Cell Biol., 2006, 127, 263–271.

    Article  Google Scholar 

  30. S. Xu, S. Chen, M. Zhang and T. Shen, First synthesis of methylated hypocrellin and its fluorescent excited state: a cautionary tale, J. Org. Chem., 2003, 68, 2048–2050.

    Article  CAS  Google Scholar 

  31. R. M. Rios and M. Bornens, The Golgi apparatus at the cell center, Curr. Opin. Cell Biol., 2003, 15, 60–66.

    Article  CAS  Google Scholar 

  32. S. M. Ali, S. K. Chee, G. Y. Yuen and M. Olivo, Hypericin and hypocrellin induced apoptosis in human mucosal carcinoma cells, J. Photochem. Photobiol., B, 2001, 65, 59–73.

    Article  CAS  Google Scholar 

  33. L. Ma, H. Tai, C. Li, Y. Zhang, Z. H. Wang and W. Z. Ji, Photodynamic inhibitory effects of three perylenequinones on human colorectal carcinoma cell line and primate embryonic stem cell line, World J. Gastroenterol., 2003, 9, 485–490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Bottone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croce, A.C., Fasani, E., Bottone, M.G. et al. Hypocrellin-B acetate as a fluorogenic substrate for enzyme-assisted cell photosensitization. Photochem Photobiol Sci 10, 1783–1790 (2011). https://doi.org/10.1039/c1pp05136a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05136a

Navigation