Skip to main content
Log in

Arsenic (III) oxidation of water applying a combination of hydrogen peroxide and UVC radiation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Arsenic is toxic to both plants and animals and inorganic arsenicals are proven carcinogens in humans. The oxidation of As(iii) to As(v) is desirable for enhancing the immobilization of arsenic and is required for most arsenic removal technologies. The main objective of this research is to apply an Advanced Oxidation Process that combines ultraviolet radiation and hydrogen peroxide (UVC/H2O2) for oxidizing aqueous solutions of As(iii). For that purpose, a discontinuous photochemical reactor (laboratory scale) was built with two 40 W tubular germicidal lamps (λ = 253.7 nm) operating inside a recycling system. The study was made beginning with a concentration of 200 μg L−1 of As(iii), changing the H2O2 concentration and the spectral fluence rate on the reactor windows. Based on references in the literature on the photolysis of hydrogen peroxide, arsenic oxidation and our experimental results, a complete reaction scheme, apt for reaction kinetics mathematical modelling, is proposed. In addition, the effectiveness of arsenic oxidation was evaluated using a raw groundwater sample. It is concluded that the photochemical treatment of As(iii) using H2O2 and UVC radiation is a simple and feasible technique for the oxidation of As(iii) to As(v).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATSDR ToxFAQS: (http://www.atsdr.cdc.gov/toxfaqs/index.asp) and the EPA’s Integrated Risk Information System Database (http://www.epa.gov/iris/subst/index.html.

  2. K. Henke, Arsenic. Environmental chemistry, health, threats and waste treatment, John Wiley, 2009, University of Kentucky Center for Applied Energy Research, USA.

    Google Scholar 

  3. World Health Organization, Guidelines for drinking-water quality: incorporating first and second addenda, 3rd edn, 2006, Vol 1, Recommendations.

    Google Scholar 

  4. S. Yoon, K. Lee, S. Oh and J. Yang, Photochemical oxidation of As (III) by vacuum-UV lamp irradiation, Water Res., 2008, 42, 3455–3463.

    Article  CAS  PubMed  Google Scholar 

  5. V. Sharma and M. Sohn, Aquatic arsenic: toxicity, speciation, transformation, and remediation, Environ. Int., 2009, 35, 743–759.

    Article  CAS  PubMed  Google Scholar 

  6. M. Emett and G. Khoe, Photochemical oxidation of arsenic by oxygen and iron in acidic solutions, Water Res., 2001, 35, 649–656.

    Article  CAS  PubMed  Google Scholar 

  7. M. Kim and J. Nriagu, Oxidation of arsenite in groundwater using ozone and oxygen, Sci. Total Environ., 2001, 247, 71–79.

    Article  Google Scholar 

  8. S. Vasudevan, S. Mohan, G. Sozhan, N. S. Raghavendran and C. V. Murugan, Studies of oxidation of As (III) to As (V) by in situ-generated hypochlorite, Ind. Eng. Chem. Res., 2006, 45, 7729–7732.

    Article  CAS  Google Scholar 

  9. P. Tandon and S. Singh, Hexacyanoferrate (III) oxidation of arsenic and its subsequent removal from the spent reaction mixture, J. Hazard. Mater., 2011, 185, 930–937.

    Article  CAS  PubMed  Google Scholar 

  10. B. Neppolian, A. Doronila, F. Grieser and M. Ashokkumar, Simple and efficient sonochemical method for the oxidation of arsenic (III) to arsenic (V), Environ. Sci. Technol., 2009, 43, 6793–6798.

    Article  CAS  PubMed  Google Scholar 

  11. M. Pettine, L. Campanella and F. Millero, Arsenite oxidation by H2O2 in aqueous solutions, Geochim. Cosmochim. Acta, 1999, 63, 2727–2735.

    Article  CAS  Google Scholar 

  12. W. Glaze, Y. Lay and J. Kang, Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation, Ind. Eng. Chem. Res., 1995, 34, 2314–2323.

    Article  CAS  Google Scholar 

  13. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69–96.

    Article  CAS  Google Scholar 

  14. M. Stefan, A. Hoy and J. Bolton, Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide, Environ. Sci. Technol., 1996, 30, 2382–2390.

    Article  CAS  Google Scholar 

  15. S. Malato, J. Blanco, C. Estrada, E. Bandala and G. Peñuela, Degradación de plaguicidas, in Eliminación de contaminantes por fotocatálisis heterogénea, ed. M. A. Blesa and B. Sánchez, editorial, CIEMAT, Madrid, 2004, Ch. 12, pp. 331–345.

    Google Scholar 

  16. M. Litter, X. Domènech and H. Mansilla, Remoción de contaminantes metálicos, in Eliminación de contaminantes por fotocatálisis heterogénea, ed. M. A. Blesa and B. Sánchez, editorial CIEMAT, Madrid, 2004, Ch. 6, pp. 163–183.

    Google Scholar 

  17. H. Lee and W. Choi, Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanism, Environ. Sci. Technol., 2002, 36, 3872–3872.

    Article  CAS  PubMed  Google Scholar 

  18. J. Ryu and W. Choi, Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides, Environ. Sci. Technol., 2004, 38, 2928–2933.

    Article  CAS  PubMed  Google Scholar 

  19. S. Yoon and J. Lee, Oxidation Mechanism of As (III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism, Environ. Sci. Technol., 2005, 39, 9695–9701.

    Article  CAS  PubMed  Google Scholar 

  20. T. Nakajima, Y. Xu, Y. Mori, M. Kishita, H. Takanashi, S. Maeda and A. Ohki, Combined use of photocatalyst and adsorbent for the removal of inorganic arsenic (III) and organoarsenic compounds from aqueous media, J. Hazard. Mater., 2005, B120, 75–80.

    Article  CAS  Google Scholar 

  21. S. Yoon, S. Oh, J. Yang, J. Lee, M. Lee, S. Yu and D. Pak, TiO2 photocatalytic oxidation mechanism of As (III), Environ. Sci. Technol., 2009, 43, 864–869.

    Article  CAS  PubMed  Google Scholar 

  22. B. Kogar and W. Inskeep, Photochemical oxidation of As (III) in ferrioxalate solutions, Environ. Sci. Technol., 2003, 37, 1581–1588.

    Article  CAS  Google Scholar 

  23. S. Hug and O. Leupin, Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH dependant formation of oxidants in the fenton reaction, Environ. Sci. Technol., 2003, 37, 2734–2742.

    Article  CAS  PubMed  Google Scholar 

  24. S. Sorlini, F. Gialdini and M. Stefan, Arsenic oxidation by UV radiation combined with hydrogen peroxide, Water Sci. Technol., 2010, 61, 339–341.

    Article  CAS  PubMed  Google Scholar 

  25. H. Yang, W.-Y. Lin and K. Rajeshwar, Homogeneous and heterogeneous reactions involving As (III) and As (V) species in aqueous media, J. Photochem. Photobiol., A, 1999, 123, 137–143.

    Article  CAS  Google Scholar 

  26. J. Michon, V. Deluchat, R. Shurky, C. Dagot and J. C. Bollinger, Optimization of a GFAAS method for determination of total inorganic arsenic in drinking water, Talanta, 2007, 479–485.

    Google Scholar 

  27. A. Yebra-Biurrum, A. Bermejo-Barrera, M. Bermejo-Barrera and M. Braciela-Alonso, Determination of trace metals in natural waters by flame atomic absorption spectrometry following on-line ion-exchange preconcentration, Anal. Chim. Acta, 1995, 341–345.

    Google Scholar 

  28. Environmental Protection Agency (EPA). Methods for the determination of metals in environmental samples. Supplement I-EPA/600/R-94-111. Method 200.9, revision 2.2. - Determination of trace metals by stabilized temperature Graphite Furnace Atomic Absorption, 1994, Cincinatti, Ohio, USA.

    Google Scholar 

  29. A. Allen, C. Hochanadel and J. Ghormley, Decomposition of water and aqueous solutions under mixed fast neutron and gamma radiation, J. Phys. Chem., 1952, 56, 575–586.

    Article  Google Scholar 

  30. S. Murov, I. Carmichael and G. Hug, Handbook of Photochemistry, 2nd edn, 1993, New York.

    Google Scholar 

  31. C. Zalazar, M. Labas, C. Martín, R. Brandi, O. Alfano and A. Cassano, The extended use of actinometry in the interpretation of photochemical reaction engineering data, Chem. Eng. J., 2005, 109, 67–81.

    Article  CAS  Google Scholar 

  32. AWWA, Standard Methods for the examination of water and wastewater, 21st edn, 2005, American Waters Works Association, USA.

    Google Scholar 

  33. D. Frank and D. Clifford, Arsenic (III) oxidation and removal from drinking water. U. S. Environmental Protection Agency. EPA-600-52/86/021, 1986, pp. 2–86.

    Google Scholar 

  34. A. Bockelen and R. Niesner, Removal of arsenic in mineral water, Vom Wasser, 1992, 78, 355–362.

    Google Scholar 

  35. C. Zalazar, M. Labas, R. Brandi and A. Cassano, Dichloroacetic acid degradation employing hydrogen peroxide and UV radiation, Chemosphere, 2007, 66, 808–805.

    Article  CAS  PubMed  Google Scholar 

  36. C. Zalazar, M. Lovato, R. Brandi and A. Cassano, Intrinsic kinetics of the oxidative reaction of Dichloroacetic acid degradation employing hydrogen peroxide and UV radiation, Chem. Eng. Sci., 2007, 62, 5840–5853.

    Article  CAS  Google Scholar 

  37. J. Drever, The Geochemistry of Natural Waters: Surface and Groundwa-ter Environments, 1997, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  38. M. Daniels, Photochemically-induced oxidation of arsenite: evidence for the existence of arsenic (IV), J. Phys. Chem., 1962, 66, 1435–1437.

    Google Scholar 

  39. U. K. Klaning, B. H. J. Bielski and K Sehested, Arsenic (IV) - a pulse-radiolysis study, Inorg. Chem., 1989, 28, 2717–2724.

    Article  Google Scholar 

  40. P. Dutta, S. Pehkonen, V. Sharma and A. Ray, Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals, Environ. Sci. Technol., 2005, 39, 1827–1834.

    Article  CAS  PubMed  Google Scholar 

  41. B. Neppolian, A. Doronila and M. Ashokkumar, Sonochemical oxidation of arsenic (III) to arsenic (V) using potassium peroxydisulfate as an oxidizing agent, Water Res., 2010, 44, 3687–3695.

    Article  CAS  PubMed  Google Scholar 

  42. C. Liao and M. Gurol, Chemical oxidation by photolytic decomposition of hydrogen peroxide, Environ. Sci. Technol., 1995, 29, 3007–3014.

    Article  CAS  PubMed  Google Scholar 

  43. O. Alfano, R. Brandi and A. Cassano, Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation, Chem. Eng. J., 2001, 3765, 1–10.

    Google Scholar 

  44. J. Ryu and W. Choi, Photocatalytic oxidation of arsenite on TiO2: controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors, Environ. Sci. Technol., 2006, 40, 7034–7039.

    Article  CAS  PubMed  Google Scholar 

  45. M. Bissen and F. Frimmel, Arsenic a review - part II: oxidation of arsenic and its removal in water treatment, Acta Hydrochim. Hydrobiol., 2003, 31, 97–107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo J. Brandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lescano, M.R., Zalazar, C.S., Cassano, A.E. et al. Arsenic (III) oxidation of water applying a combination of hydrogen peroxide and UVC radiation. Photochem Photobiol Sci 10, 1797–1803 (2011). https://doi.org/10.1039/c1pp05122a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05122a

Navigation