Skip to main content
Log in

Competitive photocyclization/rearrangement of 4-aryl-1,1-dicyanobutenes controlled by intramolecular charge-transfer interaction. Effect of medium polarity, temperature, pressure, excitation wavelength, and confinement

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of 4-aryl-1,1-dicyanobutenes (1a-1f) with different substituents were synthesized to control the intramolecular donor-acceptor or charge-transfer (C-T) interactions in the ground state. Photoexcitation of these C-T substrates led to competitive cyclization and rearrangement, the ratio being critically controlled by various environmental factors, such as solvent polarity, temperature and static pressure, and also by excitation wavelength and supramolecular confinement (polyethylene voids). In non-polar solvents, the rearrangement was dominant (>10: 1) for all examined substrates, while the cyclization was favoured in polar solvents, in particular at low temperatures. Selective excitation at the C-T band further enhanced the cyclization up to >50: 1 ratios. More importantly, the cyclization/rearrangement ratio was revealed to be a linear function of the C-T transition energy. However, the substrates with a sterically demanding or highly electron-donating substituent failed to give the cyclization product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito, California, 2010

    Google Scholar 

  2. P. Klan and J. Wirz, Photochemistry of Organic Compounds, John Willy and Sons, Ltd, 2009. For general reviews on photochemical organic transformations, see

  3. T. Bach and J. P. Hehn, Photochemical reactions as key steps in natural product synthesis, Angew. Chem., Int. Ed., 2011, 50, 1000–1045

    Article  CAS  Google Scholar 

  4. N. Hoffmann, Photochemical reactions as key steps in organic synthesis, Chem. Rev., 2008, 108, 1052–1103.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Inoue, T. Wada, S. Asaoka, H. Sato and J. P. Pete, Photochirogenesis: Multidimensional control of asymmetric photochemistry, Chem. Commun., 2000, 251–259

    Google Scholar 

  6. H. Buschmann, H. D. Scharf, N. Hoffmann and P. Esser, The isoinversion principle a general model of chemical selectivity, Angew. Chem., Int. Ed. Engl., 1991, 30, 477–515

    Article  Google Scholar 

  7. J. E. Leffler, The enthalpy-entropy relationship and its implications for organic chemistry, J. Org. Chem., 1955, 20, 1202–1231. Also see

    Article  CAS  Google Scholar 

  8. Y. Inoue, T. Yokoyama, N. Yamasaki and A. Tai, An optical yield that increases with temperature in a photochemically induced enantiomeric Isomerization, Nature, 1989, 341, 225–226

    Article  CAS  Google Scholar 

  9. Y. Inoue, H. Ikeda, M. Kaneda, T. Sumimura, S. R. L. Everitt and T. Wada, Entropy-controlled asymmetric photochemistry: Switching of product chirality by solvent, J.Am. Chem. Soc., 2000, 122, 406–407

    Article  CAS  Google Scholar 

  10. Y. Inoue, E. Matsushima and T. Wada, Pressure and temperature control of product chirality in asymmetric photochemistry. Enantiodifferentiating photoisomer-ization of cyclooctene sensitized by chiral benzenepoly-carboxylates, J. Am. Chem. Soc., 1998, 120, 10687–10696.

    Article  CAS  Google Scholar 

  11. N. J. Turro, V. Ramamurthy, W. Cherr and W. Farneth, The effect of wavelength on organic photoreactions in solution. Reactions from upper excited states, Chem. Rev., 1978, 78, 125–145. Also see

    Article  CAS  Google Scholar 

  12. O. E. Alawode, C. Robinson and S. Rayat, Clean photodecomposition of 1_methyl-4-phenyl-1fl-tetrazole-5(4Ä)-thiones to carbodiimides proceeds via a biradical, J. Org. Chem., 2011, 76, 216–222

    Article  CAS  PubMed  Google Scholar 

  13. P. Wang, Y. Wang, H. Hu, C. Spencer, X. Liang and L. Pan, Sequential removal of photolabile protecting groups for carbonylswith controlled wavelength, J. Org. Chem., 2008, 73, 6152–6157.

    Article  CAS  PubMed  Google Scholar 

  14. A. Bauer, F. Westkamper, S. Grimme and T. Bach, Catalytic enantioselective reactions driven byphotoinduced electron transfer, Nature, 2005, 436, 1139–1140

    Article  CAS  PubMed  Google Scholar 

  15. A. G. Griesbeck and H. Heckroth, Stereoselective synthesis of 2-aminocyclobutanols via photocyclization of α-amido alkylaryl ketones: Mechanistic implications for the Norrish/Yang reaction, J. Am. Chem. Soc., 2002, 124, 396–403

    Article  CAS  PubMed  Google Scholar 

  16. J. N. Moorthy, S. Samanta, A. L. Koner, S. Saha and W. M. Nau, Intramolecular O-H ••• O hydrogen-bond-mediated reversal inthe partitioning of conformationally restricted triplet1, 4-biradicals and amplification of diastereodifferentiation in their lifetimes, J. Am. Chem. Soc., 2008, 130, 13608–13617

    Article  CAS  PubMed  Google Scholar 

  17. Y. Kawanami, T. C. S. Pace, J. Mizoguchi, T. Yanagi, M. Nishijima, T. Mori, T. Wada, C. Bohne and Y. Inoue, Supramolecular complexation and enantiodifferentiating photocyclodimerization of 2_anthracenecarboxylic acid with4-aminoprolinol derivatives as chiral hydrogen-bonding templates, J. Org. Chem., 2009, 74, 7908–7921.

    Article  CAS  PubMed  Google Scholar 

  18. P. Lakshminarasimhan, R. B. Sunoji, J. Chandrasekhar and V. Ramamurthy, Cation-π interaction controlled selective Geometric photoisomerization of diphenylcyclopropane, J. Am. Chem. Soc., 2000, 122, 4815–4816

    Article  CAS  Google Scholar 

  19. S. Yamada, N. Uematsu and K. Yamashita, Role of Cation-pinteractions in the photodimerization of trans-4-styrylpyridines, J. Am. Chem. Soc., 2007, 129, 12100–12101

    Article  CAS  PubMed  Google Scholar 

  20. S. Yamada and Y. Tokugawa, Cation-π controlled solid-state photodimerization of 4-azachalcones, J. Am. Chem. Soc., 2009, 131, 20982099.

    Google Scholar 

  21. J. Mattay, Charge transfer and radical ions in photochemistry, Angew. Chem., Int. Ed. Engl., 1987, 26, 825–845

    Article  Google Scholar 

  22. J. M. Masnovi, J. K. Kochi, E. F. Hilinski and P. M. Rentzepis, Reactive ion pairs from the charge-transfer excitation of electron donor-acceptor complexes, J. Am. Chem. Soc., 1986, 108, 1126–1135

    Article  CAS  Google Scholar 

  23. M. Gonzalez-Bejar, S. E. Stiriba, M. A. Miranda and J. Perez-Prieto, Positive photocatalysis of a Diels-Alder reaction by quenching of excited naphthalene-indole charge-transfer complex with cyclohexadiene, Org. Lett., 2007, 9, 453456

    Google Scholar 

  24. N. Haga, H. Takayanagi and K. Tokumaru, Photoinduced electron transfer between acenaphthylene and1, 4-benzoquinones. Formation of dimers of acenaphthylene and 1: 1-adducts and effect of excitation mode on reactivity of thecharge-transfer complexes, J. Chem. Soc., Perkin Trans. 2, 2002, 734–745.

    Article  CAS  Google Scholar 

  25. V. Ramamurthy and F. Eaton, Photochemistry and photophysics within cyclodextrin cavities, Acc. Chem. Res., 1988, 21, 300–306

    Article  CAS  Google Scholar 

  26. J. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs, The cucurbit[n]uril family, Angew. Chem., Int. Ed., 2005, 44, 48444870

    Article  CAS  Google Scholar 

  27. J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim and K. Kim, Cucurbituril homologues and derivatives: New opportunitiesin supramolecular chemistry, Acc. Chem. Res., 2003, 36, 621–630

    Article  CAS  PubMed  Google Scholar 

  28. J. C. Scaianoand and H. Garcia, Intrazeolite photochemistry: Toward supramolecular controlof molecular photochemistry, Acc. Chem. Res., 1999, 32, 783–793

    Article  CAS  Google Scholar 

  29. J. Sivagura, A. Natarajan, L. S. Kaanumalle, J. Shailaja, S. Uppili, A. Joyand and V. Ramamurthy, Asymmetric photoreactionswithin zeolites: Role of confinement and alkali metal ions, Acc. Chem. Res., 2003, 36, 509–521

    Article  CAS  Google Scholar 

  30. R. G. Weiss, V. Ramamurthy and G. S. Hammond, Photochemistry in organic and confining media: A model, Acc. Chem. Res., 1993, 26, 530–536

    Article  CAS  Google Scholar 

  31. V. Ramamurthy, R. G. Weiss and G. S. Hammond, A model for the influence of organized media on photochemical reactions, Adv. Photochem., 1993, 18, 67–236

    CAS  Google Scholar 

  32. C. H. Tung, L. Z. Wu, L. P. Zhangand B. Chen, Supramolecular system as microreactors: control of product selectivity in organic phototransformation, Acc. Chem. Res., 2003, 36, 39–47

    Article  CAS  PubMed  Google Scholar 

  33. L. R. MacGillivray, G. S. Papaefstathiou, T. Frisâc, T. D. Hamilton, D. K. Bucar, Q. Chu, D. B. Varshney and I. G. Georgiev, Supramolecular control of reactivity in the solid state: from templates to ladderanes to metal-organic frameworks, Acc. Chem. Res., 2008, 41, 280–291

    Article  CAS  PubMed  Google Scholar 

  34. M. Yoshizawa, J. K. Klosterman and M. Fujita, Functional molecular flasks: new properties and reactions within discrete, selfassembled hosts, Angew. Chem., Int. Ed., 2009, 48, 3418–3438

    Article  CAS  Google Scholar 

  35. A. K. Sundaresan and V. Ramamurthy, Consequences of controlling free space within a reaction cavity with aremotealkyl group: Photochemistry of para-alkyl dibenzyl ketones within an organiccapsule in water, Photochem. Photobiol. Sci., 2008, 7, 1555–1564

    Article  CAS  Google Scholar 

  36. N. J. Turro, Supramolecular organic and inorganic photochemistry: Radical pair recombination in micelles, electron transfer on starburst dendrimers, and the use of DNA as a molecular wire, Pure Appl. Chem., 1995, 67, 199–208.

    Article  CAS  Google Scholar 

  37. H. Heitele, Dynamic solvent effects on electron-transfer reactions, Angew. Chem., Int. Ed. Engl., 1993, 32, 359–377

    Article  Google Scholar 

  38. H. Sumi and R. A. Marcus, Dynamical effects in electron transfer reactions, J. Chem. Phys., 1986, 84, 4894–4914

    Article  CAS  Google Scholar 

  39. R. A. Marcus, Chemical and electrochemical electron-transfer theory, Annu. Rev. Phys. Chem., 1964, 15, 155–196

    Article  CAS  Google Scholar 

  40. R. A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. 1, J. Chem. Phys., 1956, 24, 966–978. See also

    Article  CAS  Google Scholar 

  41. A. C. Benniston and A. Harriman, Charge on the move: How electron-transfer dynamics depend on molecular conformation, Chem. Soc. Rev., 2006, 35, 169–179.

    Article  CAS  PubMed  Google Scholar 

  42. S. V. Rosokha and J. K. Kochi, Fresh look at electron-transfer mechanisms viathe donor/acceptor bindings in the critical encounter complex, Acc. Chem. Res., 2008, 41, 641–653

    Article  CAS  PubMed  Google Scholar 

  43. J. K. Kochi, Innersphere electron transfer in organic chemistry. Relevance to electrophilic aromatic nitration, Acc. Chem. Res., 1992, 25, 39–47

    Article  CAS  Google Scholar 

  44. J. K. Kochi, Charge-transfer excitation of molecular complexesin organic and organometallic chemistry, Pure Appl. Chem., 1991, 63, 255–264

    Article  CAS  Google Scholar 

  45. M. Ottolenghi, Charge-transfer complexes in the excited state. Laser photolysis studies, Acc. Chem. Res., 1973, 6, 153–160.

    Article  CAS  Google Scholar 

  46. H. Saito, T. Mori, T. Wada and Y. Inoue, Diastereoselective [2+2] photocycloaddition of stilbene to chiral fumarate. Direct versus charge-transfer excitation, J. Am. Chem. Soc., 2004, 126, 1900–1906

    Article  CAS  PubMed  Google Scholar 

  47. H. Saito, T. Mori, T. Wada and Y. Inoue, Switching of product’s chirality in diastereodifferentiating [2+2] photocycloaddition of (E)- versus(Z)-stilbene to chiral fumarate upon direct and chargetransfer-band excitation, Org. Lett., 2006, 8, 1909–1912.

    Article  CAS  PubMed  Google Scholar 

  48. H. Saito, T. Mori, T. Wada and Y. Inoue, Pressure control of diastereodifferentiating [2+2] photocycloaddition of (E)-stilbene to chiral fumarate upon direct and charge-transfer excitation, Chem. Commun., 2004, 1652–1653.

    Google Scholar 

  49. K. Matsumura, T. Mori and Y. Inoue, Wavelength control of diastereodifferentiating Paterno-Büchi reaction of chiral cyanobenzoates with diphenylethene through direct versus charge-transfer excitation, J. Am. Chem. Soc., 2009, 131, 17076–17077

    Article  CAS  PubMed  Google Scholar 

  50. K. Matsumura, T. Mori and Y. Inoue, Solvent and temperature effects on diastereodiffer-entiating PatermS-Biichi reaction of chiral alkyl cyanobenzoates with diphenylethene upon direct versus charge-transfer excitation, J. Org. Chem., 2010, 75, 5461–5469.

    Article  CAS  PubMed  Google Scholar 

  51. S. M. Hubig, R. Rathore and J. K. Kochi, Steric control of electron transfer. Changeover from outer-sphere to inner-sphere mechanisms in arene/quinone redox pairs, J. Am. Chem. Soc., 1999, 121, 617–626

    Article  CAS  Google Scholar 

  52. R. Rathore, S. V. Lindeman and J. K. Kochi, Charge-transfer probes for molecular recognition via steric hindrance in donor-acceptor pairs, J. Am. Chem. Soc., 1997, 119, 9393–9404

    Article  CAS  Google Scholar 

  53. S. Fukuzumi, C. L. Wong and J. K. Kochi, Unified view of Marcus electron transfer and Mulliken charge transfer theories in organometallic chemistry. Steric effects in alkylmetals as quantitative probes for outer-sphere and inner-sphere mechanisms, J. Am. Chem. Soc., 1980, 102, 2928–2939.

    Article  CAS  Google Scholar 

  54. C. Bellucci, F. Gualtieri and A. Chiarini, Negative inotropic activityof para-substituted diethyl benzylphosphonates related to fostedil, Eur. J. Med. Chem., 1987, 22, 473–477.

    Article  CAS  Google Scholar 

  55. European patent, EP 1787991 (A1), 2007.

  56. G. Roman, J. G. Riley, J. Z. Vlahakis, R. T. Kinobe, J. F. Brien, K. Nakatsu and W. A. Szarek, Hemo oxygenase inhibition by 2-oxy-substituted 1-(1H-imidazol-1-yl)-4-phenylbutanes: Effect of halogen substitution in the phenyl ring, Bioorg. Med. Chem., 2007, 15, 3225*3234.

    Article  CAS  Google Scholar 

  57. R. C. Cookson, D. E. Sadlar and K. Salisbury, The wavelength- and solvent-dependent photochemistry of 1, 1-dicyano-2-methyl-4-phenylbut-1-ene; reaction from two excited states, J. Chem. Soc., Perkin Trans. 2, 1981, 774–782.

    Article  Google Scholar 

  58. C. Pourbaix, F. Carreaux and B. Carboni, Metal-catalyzed release of supported boronic acids for C-C bond formation, Org. Lett., 2001, 3, 803–805.

    Article  CAS  PubMed  Google Scholar 

  59. M. K. M. Dirania and J. Hill, Photo-acetalisation of α-aryloxyacetones, J. Chem. Soc., 1971, 1213–1215.

    Google Scholar 

  60. Y. Z. Chen and R. G. Weiss, Photoreactions of substituted o-cresyl acylates in cyclohexane and inpolyethylene films. The influences of intra- and inter-molecule ‘crowding’ effects, Photochem. Photobiol. Sci., 2009, 8, 916–925

    Article  CAS  PubMed  Google Scholar 

  61. C. A. Chesta, J. Mohanty, W. M. Nau, U. Bhattacharjee and R. G. Weiss, New insights into the mechanism of triplet radical-pair combinations. The persistent radical effect masks the distinction between in-cage and out-of-cage processes, J. Am. Chem. Soc., 2007, 129, 5012–5022

    Article  CAS  PubMed  Google Scholar 

  62. T. Mori, R. G. Weiss and Y. Inoue, Mediation of conformationallycontrolled photodecarboxylations of chiral and cyclic aryl esters bysubstrate structure, temperature, pressure, and medium constraints, J. Am. Chem. Soc., 2004, 126, 8961–8975.

    Article  CAS  PubMed  Google Scholar 

  63. For example, see: (a) J. W. Verhoeven, Through-bond charge transfer interaction and photoinduced charge separation, Pure Appl. Chem., 1986, 58, 1285–90

    Article  CAS  Google Scholar 

  64. A. J. De Gee, J. W. Verhoeven, W. J. Sep and T. J. De Boer, Through-bond charge-transfer interaction in N-(p-methoxyphenylalkyl)pyridinium ions, J. Chem. Soc., Perkin Trans. 2, 1975, 579–583.

    Article  Google Scholar 

  65. For an account, see: (a) S. Grimme, J. Antony, T. Schwabe and C. M. Lichtenfeld, Density functional theory with dispersion corrections for supramolecularstructures, aggregates, and complexes of (bio)organic molecules, Org. Biomol. Chem., 2007, 5, 741–758. Also see

    Article  CAS  PubMed  Google Scholar 

  66. S. Grimme, SemiempiricalGGA-type density functional constructedwith a long-range dispersion correction, J. Comput. Chem., 2006, 27, 1787–1799

    Article  CAS  PubMed  Google Scholar 

  67. S. Grimme, Accurate description of van der Waals complexesby density functional theory including empirical corrections, J. Comput. Chem., 2004, 25, 1463–1473.

    Article  CAS  PubMed  Google Scholar 

  68. D. Rehm and A. Weller, Kinetics of fluorescencequenching by electron and H-atom transfer, Isr. J. Chem., 1970, 8, 259–271

    Article  CAS  Google Scholar 

  69. D. Rehm and A. Weller, Bonding and fluorescence spectra of hetereoexcimers, Z. Phys. Chem., 1970, 69, 183–200. See also

    Article  CAS  Google Scholar 

  70. E. Prasad and K. R. Gopidas, Photoinduced electron transfer in hydrogen bonded donoracceptor systems. Study of the dependence of rate on free energy and simultaneous observation of the Marcus and Rehm-Weller behaviors, J. Am. Chem. Soc., 2000, 122, 3191–3196

    Article  CAS  Google Scholar 

  71. S. M. Hubig and J. K. Kochi, Electron-transfer mechanisms with photoactivated quinones. The encounter complex versus the Rehm-Weller paradigm, J. Am. Chem. Soc., 1999, 121, 1688–1694.

    Article  CAS  Google Scholar 

  72. P. Pasman, J. W. Verhoeven and T. J. de Boer, Fluorescence of intramolecular electron donor-acceptor systems; the importance of through-bond interaction, Chem. Phys. Lett., 1978, 59, 381385.

    Article  Google Scholar 

  73. R. C. Cookson and J. E. Kemp, Retention of configuration at the migrating centre in both photochemical and thermal [1,3]-sigmatropic shift of a benzyl group. Relaxationof orbital symmetry control in an unsymmetrical ally1 system, Chem. Commun., 1971, 385–386.

    Google Scholar 

  74. C. Diedrich and S. Grimme, Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra, J. Phys. Chem. A, 2003, 107, 2524–2539

    Article  CAS  Google Scholar 

  75. T. Mori, Y. Inoue and S. Grimme, Quantum chemical study on the circular dichroism spectra and specific rotation of donor-acceptor cyclophanes, J. Phys. Chem. A, 2007, 111, 7995–8006.

    Article  CAS  PubMed  Google Scholar 

  76. K. R. Brower, B. Gay and T. L. Konkol, The volume of activation in unimolecular decomposition reactions. Decarboxylation and demercuration, J. Am. Chem. Soc., 1966, 88, 1681–1685

    Article  CAS  Google Scholar 

  77. K. R. Brower and J. S. Chen, The volume of Activation in Elimination Reactions, J. Am. Chem. Soc., 1965, 87, 3396–3401

    Article  CAS  Google Scholar 

  78. K. R. Brower, The volume change of activation in the Claisen and Curtius rearrangements, J. Am. Chem. Soc., 1961, 83, 4370–4372

    Article  CAS  Google Scholar 

  79. K. R. Browe, The volume change of activation in the decomposition of aromatic diazonium salts, J. Am. Chem. Soc., 1960, 82, 4535–4537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Mori.

Additional information

This article is published as part of a themed issue in honour of Yoshihisa Inoue’s research accomplishments on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Nishiuchi, E., Fukuhara, G. et al. Competitive photocyclization/rearrangement of 4-aryl-1,1-dicyanobutenes controlled by intramolecular charge-transfer interaction. Effect of medium polarity, temperature, pressure, excitation wavelength, and confinement. Photochem Photobiol Sci 10, 1405–1414 (2011). https://doi.org/10.1039/c1pp05038a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05038a

Navigation