Skip to main content
Log in

Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The bioluminescence reaction, which uses luciferin, Mg2+-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make three separate mutant enzymes with a single bridge. Moreover, C81-A105C mutant luciferase was modified and successfully secreted to the extracellular medium. By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red and the optimum temperature of activity was also increased (up to 10 °C more than wild type). Amongst mutants with a disulfide bridge, P451C-V469C and L306C-L309C mutants exhibit a single peak in the red region of the spectrum at pH 7.8. It is worthwhile to note that with the design of a secreted luciferase, the increased optimum temperature, thermostability and emission of red light might make mutant luciferase suitable reporters for the study of gene expression in high through-put screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

Replacements are abbreviated using the single-letter code for amino acids in this manner: replacement of leucine-306 with cysteine is abbreviated L306C. Multiple replacements are listed separated by ahyphen for adisulfide bond, e.g. Leu306C-L309C. Double disulfide bonds are separated by diagonal slasheshes, e.g., C81-A105 C/P451C-V469C.

PEI:

Polyethylenimine

ATP:

Adenosine triphosphate

ANS:

1-Anilino-8-naphthalene sulfonate

CD:

Circular dichroism

Ni-NTA:

Nickel nitrilotriacetic acidPpy Photinus pyralis

Trp:

Tryptophan

References

  1. M. DeLuca, Firefly luciferase, Adv. Enzymol., 1976, 44, 37–68.

    CAS  PubMed  Google Scholar 

  2. H. H. Seliger and W. D. McElroy, Quantum yields in the oxidation of firefly luciferin, Biochem. Biophys. Res. Commun., 1959, 1, 21–24.

    Article  CAS  Google Scholar 

  3. E. H. White and D. F. Roswell, the chemiluminescence of amids and monoacyl hydrazides based on firefly dehydroluciferin, Photochem. Photobiol., 1991, 53, 131–136.

    Article  CAS  PubMed  Google Scholar 

  4. A. Lundin and M. Deluca, Bioluminescence and chemiluminescence, Academic Press, New York 1981, pp. 187–196.

    Book  Google Scholar 

  5. S. J. Gould, Firefly luciferase as a tool in molecular and cell biology, Anal. Biochem., 1988, 175, 5–13.

    Article  CAS  PubMed  Google Scholar 

  6. C. H. Contag and M. H. Bachmann, Advances in in vivo bioluminescence imaging of gene expression, Annu. Rev. Biomed. Eng., 2002, 4, 235–260.

    Article  CAS  PubMed  Google Scholar 

  7. P. V. Dickson, B. Hamner, C. Y. C. Ng, M. M. Hall, J. Zhou, P. W. Hargrove, M. B. McCarville and A. M Davidoff, In vivo bioluminescence imaging for early detection and monitoring of disease progression in a murine model of neuroblastoma, J. Pediatr. Surg., 2007, 42, 1172–1179.

    Article  PubMed  Google Scholar 

  8. R. S. Dothager, K. Flentie, B. Moss, M. H. Pan, A. Kesarwala and D. Piwnica-Worms, Advances in bioluminescence imaging of live animal models, Curr. Opin. Biotechnol., 2009, 20, 45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P. J. White, D. Squirrell, J. Arnaud, P. C. R. Lowe and J. A. Murray, Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354, Biochem. J., 1996, 319, 343–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. Kajiyama and E. Nakano, Thermostabilization of firefly luciferase by a single amino acid substitution at position 217, Biochemistry, 1993, 32, 13795–13799.

    Article  CAS  PubMed  Google Scholar 

  11. L. C. Tisi, P. J. White, D. J. Squirrell, M. J. Murphy, C. R. Lowe and J. A. H. Murray, Development of a thermostable firefly luciferase, Anal. Chim. Acta, 2002, 457, 115–123.

    Article  CAS  Google Scholar 

  12. N. Tafreshi, S. Hosseinkhani, M. Sadeghizadeh, M. Sadeghi, B. Ranjbar and H. Naderi-Manesh, the Influence of Insertion of a Critical Residue (Arg356) in Structure and Bioluminescence Spectra of Firefly Luciferase, J. Biol. Chem., 2007, 282, 8641–8647.

    Article  CAS  PubMed  Google Scholar 

  13. A. Moradi, S. Hosseinkhani, H. Naderi-Manesh, M. Sadeghizadeh and B. S. Alipour, Effect of Charge Distribution in a Flexible Loop on the Bioluminescence Color of Firefly Luciferases, Biochemistry, 2009, 48, 575–582.

    Article  CAS  PubMed  Google Scholar 

  14. B. Said Alipour, S. Hosseinkhani, S. K. Ardestani and A. Moradi, The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase, Photochem. Photobiol. Sci., 2009, 8, 847–855.

    Article  CAS  Google Scholar 

  15. A. Riahi-Madvar and S. Hosseinkhani, Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis, Protein Eng., Des. Sel., 2009, 22, 655–663.

    Article  CAS  Google Scholar 

  16. T. E. Creighton, Disulfide bonds and protein stability, BioEssays, 1988, 8, 57–63.

    Article  CAS  PubMed  Google Scholar 

  17. J. E. Villafranca, E. E. Howell, S. J. Oatley, N. Xuong and J. Kraut, An engineered disulfide bond in dihydrofolate reductase, Biochemistry, 1987, 26, 2182–2189.

    Article  CAS  PubMed  Google Scholar 

  18. L. J. Perry and R. Wetzel, Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation, Science, 1984, 226, 555–557.

    Article  CAS  PubMed  Google Scholar 

  19. M. Matsumura and B. W. Matthews, Control of enzyme activity by an engineered disulfide bond, Science, 1989, 243, 792–794.

    Article  CAS  PubMed  Google Scholar 

  20. J. A. Wells and D. B. Powers, In vivo formation and stability of engineered disulfide bonds in subtilisin, J. Biol. Chem., 1986, 261, 6564–6570.

    Article  CAS  PubMed  Google Scholar 

  21. M. W. Pantoliano, R. C. Ladner, P. N. Bryan, M. L. Rollence, J. F. Wood and T. L. Poulos, Protein engineering of subtilisin BPN’: enhanced stabilization through the introduction of two cysteines to form a disulfide bond, Biochemistry, 1987, 26, 2077–2082.

    Article  CAS  PubMed  Google Scholar 

  22. R. T. Sauer, K. Hehir, R. S. Stearman, M. A. Weiss, A. Jeitler-Nilsson, E. G. Suchanek and C. O. Pabo, An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of lambda Repressor, Biochemistry, 1986, 25, 5992–5998.

    Article  CAS  PubMed  Google Scholar 

  23. T. N. Devine, G. D. Kutuzova and V. A. Green, Luciferase from east european firefly Luciola mingrelica: cloning and nucleotide sequence of the cDNA, overexpression in Esherichia coli and purification of the enzyme, Biochim. Biophys. Acta, Gene Struct. Expression, 1993, 1173, 121–132.

    Article  CAS  Google Scholar 

  24. B. R. Branchini, T. L. Southworth and M. H. Murtiashaw et al., An Alternative Mechanism of Bioluminescence Color Determination in Firefly Luciferase, Biochemistry, 2004, 43, 7255–7262.

    Article  CAS  PubMed  Google Scholar 

  25. J. R. Kumita, L. Jain, E. Safroneeva and G. A. Woolley, A Cysteine-Free Firefly Luciferase Retains Luminescence Activity, Biochem. Biophys. Res. Commun., 2000, 267, 394–397.

    Article  CAS  PubMed  Google Scholar 

  26. E. I. Dement’eva, G. D. Kutuzova, E. E. Zheleznova, I. A. Lundovskikh and N. N. Ugarova, Physico-chemical properties of recombinant Luciola mingrelica luciferase and its mutant forms, Biokhimiya, 1996, 61, 152–159.

    Google Scholar 

  27. V. R. Viviani, A. C. R. Silva, G. L. O. Perez, R. V. Santelli, E. J. H. Bechara and F. C. Reinach, Cloning and Molecular Characterization of the cDNA for the Brazilian Larval Click-beetle Pyrearinus termitilluminans Luciferase, Photochem. Photobiol., 1999, 70, 254–260.

    Article  CAS  PubMed  Google Scholar 

  28. V. R. Viviani, F. G. C. Arnoldi, B. Venkatesh, A. J. S. Neto, F. G. T. Ogawa, A. T. L. Oehlmeyer and Y. Ohmiya, Active-Site Properties of Phrixotrix Railroad Worm Green and Red Bioluminescence-Eliciting Luciferases, J. Biochem., 2006, 140, 467–474.

    Article  CAS  PubMed  Google Scholar 

  29. M. Imani, S. Hosseinkhani, S. Ahmadian and M. Nazari, Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH-sensitivity, Photochem. Photobiol. Sci., 2010, 9, 1167–1177.

    Article  CAS  PubMed  Google Scholar 

  30. T. H. Kwaks and A. P. Otte, Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells, Trends Biotechnol., 2006, 24, 137–142.

    Article  CAS  PubMed  Google Scholar 

  31. D. C. Andersen and L. Krummen, Recombinant protein expression for therapeutic applications, Curr. Opin. Biotechnol., 2002, 13, 117–123.

    Article  CAS  PubMed  Google Scholar 

  32. S. T. Nguan, B. Ho and J. L. Ding, Engineering a novel secretion signal for cross-host recombinant protein expression, Protein Eng., Des. Sel., 2002, 15, 337–345.

    Article  Google Scholar 

  33. T. Wurdinger, A secreted luciferase for ex vivo monitoring of in vivo processes, Nat. Methods, 2008, 5, 171–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. N. Hiramatsu, Secreted protein-based reporter systems for monitoring inflammatory events: critical interference by endoplasmic reticulum stress, J. Immunol. Methods, 2006, 315, 202–207.

    Article  CAS  PubMed  Google Scholar 

  35. J. Berger, J. Hauber, R. Hauber, R. Geiger and B. R. Cullen, Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells, Gene, 1988, 66, 1–10.

    Article  CAS  PubMed  Google Scholar 

  36. C. H. Contag and B. D. Ross, It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology, J. Magn. Reson. Imaging, 2002, 16, 378–387.

    Article  PubMed  Google Scholar 

  37. R. Weissleder and V. Ntziachristos, Shedding light onto live molecular targets, Nat. Med., 2003, 9, 123–128.

    Article  CAS  PubMed  Google Scholar 

  38. V. S. Dani, C. Ramakrishnan and R. Varadarajan, MODIP revisited: Re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins, Protein Eng., Des. Sel., 2003, 16, 187–193.

    Article  CAS  Google Scholar 

  39. A. A. Dombkowski, Disulfide by Design: A computational method for the rational design of disulfide bonds in proteins, Bioinformatics, 2003, 19, 14–22.

    Article  CAS  Google Scholar 

  40. R. M. Horton, H. D. Hunt, S. N. Ho, J. K. Pullen and L. R. Pease, Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension, Gene, 1989, 77, 61–68.

    Article  CAS  PubMed  Google Scholar 

  41. A. F. S. A. Habeeb, Reaction of protein sulfhydryl groups with Ellman’s reagent, Methods Enzymol., 1972, 25, 457–464.

    Article  CAS  PubMed  Google Scholar 

  42. S. Pollitt and H. Zalkin, Role of primary structure and disulfide bond formation in beta-lactamase secretion, J. Bacteriol., 1983, 153, 27–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. R. Emamzadeh, S. Hosseinkhani, M. Sadeghizadeh, M. Nikkhah, M. Chaichi and M. Mortazavi, cDNA cloning expression and homology modeling of a luciferase from the firefly Lampyridea maculata, J. Biochem. Mol. Biol., 2006, 39, 578–585.

    CAS  PubMed  Google Scholar 

  44. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  45. S. Hosseinkhani, R. Szittner and E. A. Meighen, Random mutagenesis of bacterial luciferase: Critical role of Glu175 in control of luminescence decay, Biochem. J., 2005, 385, 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. G. V. Semisotnov, N. A. Rodionova, O. I. Razgulyaev, V. N. Uversky, A. F. Gripas and R. I. Gilmanshin, Study of the molten globule intermediate state in protein folding by a hydrophobic fluorescent probe, Biopolymers, 1991, 31, 119–128.

    Article  CAS  PubMed  Google Scholar 

  47. M. R. Eftink and C. A. Ghiron, Exposure of tryptophanyl residues and protein dynamics, Biochemistry, 1977, 16, 5546–5551.

    Article  CAS  PubMed  Google Scholar 

  48. P. Manavalan and W. C. Johnson Jr, Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra, Anal. Biochem., 1987, 167, 76–85.

    Article  CAS  PubMed  Google Scholar 

  49. N. Eswar, D. Eramian, B. Webb, M. Y. Shen and A. Sali, Protein structure modeling with MODELLER, Methods Mol. Biol., 2008, 426, 145–159.

    Article  CAS  PubMed  Google Scholar 

  50. S. E. Reed, E. M. Staley, J. P. Mayginnes, D. J. Pintel and G. E. Tullis, Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors, J. Virol. Methods, 2006, 138, 85–98.

    Article  CAS  PubMed  Google Scholar 

  51. P. K. Davis, A. Ho and S. F. Dowdy, Biological methods for cell-cycle synchronization of mammalian cells, Biotechniques, 2001, 30, 1322–1331.

    Article  CAS  PubMed  Google Scholar 

  52. F. X. Schmid, Optical spectroscopy to characterize protein conformation and conformational changes. in (T. E. Creighton, ed.), Protein Structure a Practical Approach, 1997, pp. 261–297.

    Google Scholar 

  53. S. F. Betz, Disulfide bonds and the stability of globular proteins, Protein Sci., 1993, 2, 1551–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. A. Shaw and R. Bott, Engineering enzymes for stability, Curr. Opin. Struct. Biol., 1996, 6, 546–550.

    Article  CAS  PubMed  Google Scholar 

  55. J. Mansfeld, G. Vriend, B. W. Dijkstra, O. R. Veltman, B. Van Den Burg, G. Venema and R. V. G. Ulbrich-Hofmann Eijsink, Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond, J. Biol. Chem., 1997, 272, 11152–11156.

    Article  CAS  PubMed  Google Scholar 

  56. R. Sowdhamini, N. Srinivasan, B. Shoichet, D. V. Santi, C. Ramakrishnan and P. Balaram, Stereochemical modeling of disufide bridges: Criteria for introduction into proteins by site-directed mutagenesis, Protein Eng., Des. Sel., 1989, 3, 95–103.

    Article  CAS  Google Scholar 

  57. A. S. Bruce and K. V. Wood, Firefly luciferase engineered for improved genetic reporting, Promega Notes, 1994, 49, 14–21.

    Google Scholar 

  58. J. M. Sommer, Q. L. Cheng, G. A. Keller and C. C. Wang, In Vivo import of firefly luciferase into the glycosomes of Trypanosoma brucei and mutational analysis of the C-terminal targeting signal, Mol. Biol. Cell, 1992, 3, 749.

  59. Navizet, Y. J. Liu, N. Ferré, H. Y. Xiao, W. H. Fang and R. Lindh, Colortuning mechanism of firefly investigated by multi-configurational perturbation method, J. Am. Chem. Soc., 2010, 132, 706–712.

    Article  CAS  PubMed  Google Scholar 

  60. S. Hosseinkhani, Molecular enigma of multicolor bioluminescence of firefly luciferase, Cell. Mol. Life Sci., 2011, 68, 1167–1182.

    Article  CAS  PubMed  Google Scholar 

  61. N. S. Tan, B. Ho and J. L. Ding, Engineering a novel secretion signal for cross-host recombinant protein expression, Protein Eng., Des. Sel., 2002, 15, 337–345.

    Article  CAS  Google Scholar 

  62. C. E. Badr, J. W. Hewett, X. O. Breakefield and B. A. Tannous, A highly sensitive assay for monitoring the secretory pathway and ER stress, PLoS One, 2007, 2, e571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Hosseinkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, M., Hosseinkhani, S. Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase. Photochem Photobiol Sci 10, 1203–1215 (2011). https://doi.org/10.1039/c1pp05012e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05012e

Navigation