Skip to main content
Log in

UV radiation simultaneously affects phototrophy and phagotrophy in nanoflagellate-dominated phytoplankton from an Andean shallow lake

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Mixotrophic nanoflagellates, that combine photosynthesis and phagotrophy, are important members of planktonic food webs in many aquatic environments depending on the balance among the different carbon and energy sources. We carried out field sampling and laboratory experiments with natural nanoflagellate assemblages from an Andean North-Patagonian lake exposing them or not to UVR, and measuring photosynthetic parameters and bacterivory. The effect of different light treatments on the photosynthetic efficiency was studied by the non-invasive, pulse amplitude-modulated (PAM) fluorescence technique, and bacterivory was assessed with fluorescently labeled bacteria (FLB). Mixotrophic nanoflagellates were clearly dominant (up to 90% of total phytoplankton and 88% of total nanoflagellate abundance), and in the experiments labeled bacteria were observed in more than 75% of mixotrophic cells. These results support the idea that these phytoflagellates were never entirely photosynthetic. The high light : phosphorus ratio and the high C : N : P ratio suggest a strong nutrient limitation towards P. Our results show that both functions, photosynthesis and bacteria ingestion, were simultaneously reduced by the same level of UVR. We estimated that UVR exposure of mixotrophic nanoflagellates reduced photosystem II activity between 23% and 31% while ingestion rates were reduced between 23% and 28%. Therefore, our results suggest that the different cell functions could be concurrently impacted by UVR, implying that patterns and rates of C transfer would be substantially altered in the microbial food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Corno and K. Jürgens, Appl. Environ. Microbiol., 2006, 72, 78–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G. Corno and K. Jürgens, Environ. Microbiol., 2008, 10, 2857–2871.

    Article  PubMed  Google Scholar 

  3. K. E. Selph, M. R. Landry and E. A. Laws, Aquat. Microb. Ecol., 2003, 32, 23–37.

    Article  Google Scholar 

  4. A. K. Bergstrom, M. Jansson, S. Drakare and P. Blomqvis, Freshwater Biol., 2003, 48, 868–877.

    Article  Google Scholar 

  5. H. L. Stickney, R. R. Hood and D. K. Stoecker, Ecol. Modell., 2000, 125, 203–230.

    Article  CAS  Google Scholar 

  6. J. Tittel, V. Bissinger, B. Zippel, U. Gaedke, E. Bell, A. Lorke and N. Kamjunke, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 12776–12781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. I. Jones, Freshwater Biol., 2000, 45, 219–226.

    Article  Google Scholar 

  8. T. B. Gurung, J. Urabe and M. Nakanishi, Aquat. Microb. Ecol., 1999, 17, 27–35.

    Article  Google Scholar 

  9. T. H. Chrzanowski and J. P. Grover, Limnol. Oceanogr., 2001, 46, 1319–1330.

    Article  CAS  Google Scholar 

  10. T. F. Thingstad, H. Havskum, K. Garde and B. Riemann, Ecology, 1996, 77, 2108–2118.

    Article  Google Scholar 

  11. R. W. Sterner, J. J. Elser, E. J. Fee, S. J. Guildford and T. H. Chrzanowski, Am. Nat., 1997, 150, 663–684.

    Article  CAS  PubMed  Google Scholar 

  12. J. J. Elser, M. Kyle, W. Makino, T. Yoshida and J. Urabe, Aquat. Microb. Ecol., 2003, 31, 49–65.

    Article  Google Scholar 

  13. W. Marshall and J. Laybourn-Parry, Freshwater Biol., 2002, 47, 2060–2070.

    Article  Google Scholar 

  14. K. Nygaard and A. Tobiesen, Limnol. Oceanogr., 1993, 38, 273–279.

    Article  Google Scholar 

  15. B. E. Modenutti and E. G. Balseiro, Freshwater Biol., 2002, 47, 121–128.

    Article  Google Scholar 

  16. E. G. Balseiro, C. P. Queimaliños and B. E. Modenutti, Rev. Chil. Historia Nat., 2004, 77, 73–85.

    Google Scholar 

  17. R. Sommaruga, A. Oberleiter and R. Psenner, Appl. Environ. Micro-biol., 1996, 62, 4395–4400.

    Article  CAS  Google Scholar 

  18. C. A. Ochs, J. Plankton Res., 1997, 19, 1517–1536.

    Article  Google Scholar 

  19. R. Sommaruga and A. G. J. Buma, J. Eukaryotic Microbiol., 2000, 47, 450–455.

    Article  CAS  Google Scholar 

  20. R. W. Sanders, A. L. Macaluso, T. J. Sardina and D. L. Mitchell, Aquat. Microb. Ecol., 2005, 40, 283–292.

    Article  Google Scholar 

  21. A. L. Macaluso, D. L. Mitchell and R. W. Sanders, Appl. Environ. Microbiol., 2009, 75, 4525–4530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. B. E. Modenutti, E. G. Balseiro, C. Callieri and R. Bertoni, Limnol. Oceanogr., 2008, 53, 446–455.

    Article  Google Scholar 

  23. J. M. Medina-Sanchez, M. Villar-Argaiz and P. Carrillo, Limnol. Oceanogr., 2004, 49, 1722–1733.

    Article  CAS  Google Scholar 

  24. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis, Blackwell Science, Malden, MA, USA, 2007.

    Book  Google Scholar 

  25. O. Schofield, B. Prezelin and G. Johnsen, J. Phycol., 1996, 32, 574–583.

    Article  CAS  Google Scholar 

  26. P. J. Neale, M. P. Lesser and J. J. Cullen, Ultr. Rad. Biol. Res. Antar., 1993, 1–14.

    Google Scholar 

  27. R. Sommaruga and F. García-Pichel, Arch. Hydrobiol., 1999, 144, 255–169.

    Article  CAS  Google Scholar 

  28. V. L. Orce and E. W. Helbling, Global Planet. Change, 1997, 15, 113–121.

    Article  Google Scholar 

  29. V. Villafañe, E. W. Helbling and H. E. Zagarese, Ambio, 2001, 30, 112–117.

    Article  PubMed  Google Scholar 

  30. E. C. Weatherhead and S. B. Andersen, Nature, 2006, 441, 39–45.

    Article  CAS  PubMed  Google Scholar 

  31. C. Callieri, B. Modenutti, C. Queimaliños, R. Bertoni and E. Balseiro, Aquat. Ecol., 2007, 41, 511–523.

    Article  CAS  Google Scholar 

  32. M. Bastidas Navarro, B. Modenutti, C. Callieri, R. Bertoni and E. Balseiro, Aquat. Ecol., 2008, 43, 867–878.

    Article  CAS  Google Scholar 

  33. G. Corno, B. Modenutti, C. Callieri, E. Balseiro, R. Bertoni and E. Caravati, Limnol. Oceanogr., 2009, 54, 1098–1112.

    Article  CAS  Google Scholar 

  34. J. M. Paruelo, A. Beltran, E. Jobbágy, O. Sala and R. Golluscio, Ecología Austral, 1998, 8, 85–101.

    Google Scholar 

  35. E. G. Balseiro and B. E. Modenutti, Int. Rev. Gesamten Hydrobiol. Hydrogr., 1990, 75, 475–491.

    Article  Google Scholar 

  36. D. P. Morris, H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R. Moeller and C. Queimaliños, Limnol. Oceanogr., 1995, 40, 1381–1391.

    Article  CAS  Google Scholar 

  37. M. Bastidas Navarro, E. Balseiro and B. Modenutti, Photochem. Photobiol., 2009, 85, 332–340.

    Article  CAS  PubMed  Google Scholar 

  38. APHA, Standard methods for the examination of water and wastewater, American Public Health Association, AWWA, Washington, D.C., 2005.

    Google Scholar 

  39. J. C. Valderrama, Mar. Chem., 1981, 10, 109–122.

    Article  CAS  Google Scholar 

  40. E. A. Nusch, Arch. Hydrobiol. Beih. Ergebn. Limnol., 1980, 14, 14–36.

    CAS  Google Scholar 

  41. J. Sun and D. Y. Liu, J. Plankton Res., 2003, 25, 1331–1346.

    Article  Google Scholar 

  42. K. G. Porter and Y. S. Feig, Limnol. Oceanogr., 1980, 25, 943–948.

    Article  Google Scholar 

  43. P. F. Kemp, B. F. Sherr, E. B. Sherr and J. J. Cole, Handbook of methods in Aquatic Microbial Ecology, Lewis Publishers, NY, 1993.

    Google Scholar 

  44. J. M. Shick, W. C. Dunlap, B. E. Chalker, A. T. Banaszak and T. K. Rosenzweig, Mar. Ecol.: Prog. Ser., 1992, 90, 139–148.

    Article  CAS  Google Scholar 

  45. B. Modenutti, E. Balseiro, C. Corno, C. Callieri, R. Bertoni and E. Caravati, Photochem. Photobiol., 2010, 86, 871–881.

    Article  CAS  PubMed  Google Scholar 

  46. M. S. Souza, B. E. Modenutti, P. Carrillo, M. Villar-Argaiz, J. M. Medina-Sánchez, F. Bullejos and E. G. Balseiro, Limnol. Oceanogr., 2010, 55, 1024–1032.

    Article  CAS  Google Scholar 

  47. K. R. M. Mackey, A. Paytan, A. R. Grossman and S. Bailey, Limnol. Oceanogr., 2008, 53, 900–913.

    Article  CAS  Google Scholar 

  48. K. I. Andreasson and S. A. Wangberg, J. Photochem. Photobiol., B, 2006, 84, 111–118.

    Article  CAS  Google Scholar 

  49. K. Maxwell and G. N. Johnson, J. Exp. Bot., 2000, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  50. K. Šimek and V. Straskrabova, J. Plankton Res., 1992, 14, 773–787.

    Article  Google Scholar 

  51. F. B. Sherr, E. B. Sherr and R. D. Falon, Appl. Environ. Microbiol., 1987, 53, 958–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. E. B. Sherr and B. F. Sherr, in Handbook of methods in Aquatic Microbial Ecology, ed. P. F. Kemp, B. F. Sherr, E. B. Sherr and J. J. Cole, Lewis Publisher, Boca Raton, 1993, pp. 695–701.

  53. P. H. C. Eilers and J. C. H. Peeters, Ecol. Modell., 1988, 42, 199–215.

    Article  Google Scholar 

  54. T. A. Day and P. J. Neale, Annu. Rev. Ecol. Syst., 2002, 33, 371–396.

    Article  Google Scholar 

  55. E. W. Helbling, A. G. J. Buma, W. van de Poll, M. V. Fernández Zenoff and V. E. Villafañe, J. Exp. Mar. Biol. Ecol., 2008, 365, 96–102.

    Article  CAS  Google Scholar 

  56. B. Modenutti, E. Balseiro, C. Callieri, C. Queimaliños and R. Bertoni, Freshwater Biol., 2004, 49, 160–169.

    Article  CAS  Google Scholar 

  57. J. Urabe, T. B. Gurung and T. Yoshida, Aquat. Microb. Ecol., 1999, 18, 77–83.

    Article  Google Scholar 

  58. I. Berman-Frank and Z. Dubinsky, BioScience, 1999, 49, 29–37.

    Article  Google Scholar 

  59. P. Carrillo, J. M. MedinaSanchez and M. VillarArgaiz, Limnol. Oceanogr., 2002, 47, 1294–1306.

    Article  Google Scholar 

  60. J. M. Medina-Sánchez, M. Villar-Argaiz and P. Carrillo, Limnol. Oceanogr., 2006, 51, 913–924.

    Article  Google Scholar 

  61. K. J. Flynn and A. Mitra, J. Plankton Res., 2009, 31, 965–992.

    Article  CAS  Google Scholar 

  62. J Urabe, T. B. Gurung, T. Yoshida, T. Sekino, M. Nakanishi, M. Maruo and E. Nakayama, Limnol. Oceanogr., 2000, 45, 1558–1563.

    Article  Google Scholar 

  63. J. A. Dharmadhikari, J. S. D’Souza, M. Gudipati, A. K. Dharmad-hikari, B. J. Rao and D. Mathur, Sens. Actuators, B, 2006, 115, 439–443.

    Article  CAS  Google Scholar 

  64. M. A. Xenopoulos, P. C. Frost and J. J. Elser, Ecology, 2002, 83, 423–435.

    Article  Google Scholar 

  65. D. O. Hessen, E. Leu, P. J. Faerovig and S. Falk Petersen, Deep-Sea Res., Part II, 2008, 55, 2169–2175.

    Article  CAS  Google Scholar 

  66. T. Lovdal, T. Tanaka and T. f. Thingstad, Limnol. Oceanogr., 2007, 52, 1407–1419.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Bastidas Navarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro, M.B., Balseiro, E. & Modenutti, B. UV radiation simultaneously affects phototrophy and phagotrophy in nanoflagellate-dominated phytoplankton from an Andean shallow lake. Photochem Photobiol Sci 10, 1318–1325 (2011). https://doi.org/10.1039/c1pp05010a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05010a

Navigation