Skip to main content

Advertisement

Log in

PDT-induced inflammatory and host responses

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is used in the management of neoplastic and nonmalignant diseases. Its unique mechanisms of action include direct cytotoxic effects exerted towards tumor cells, destruction of tumor and peritumoral vasculature and induction of local acute inflammatory reaction. The latter develops in response to (1) damage to tumor and stromal cells that leads to the release of cell death-associated molecular patterns (CDAMs) or damage associated molecular patterns (DAMPs), (2) early vascular changes that include increased vascular permeability, vascular occlusion, and release of vasoactive and proinflammatory mediators, (3) activation of alternative pathway of complement leading to generation of potent chemotactic factors, and (4) induction of signaling cascades and transcription factors that trigger secretion of cytokines, matrix metalloproteinases, or adhesion molecules. The majority of studies indicate that induction of local inflammatory response contributes to the antitumor effects of PDT and facilitates development of systemic immunity. However, the degree of PDT-induced inflammation and its subsequent contribution to its antitumor efficacy depend on multiple parameters, such as chemical nature, concentration and subcellular localization of the photosensitizers, the spectral characteristics of the light source, light fluence and fluence rate, oxygenation level, and tumor type. Identification of detailed molecular mechanisms and development of therapeutic approaches modulating PDT-induced inflammation will be necessary to tailor this treatment to particular clinical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. P. Castano, P. Mroz and M. R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nat. Rev. Cancer, 2006, 6, 535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. Nowis, T. Stoklosa, M. Legat, T. Issat, M. Jakobisiak and J. Golab, The influence of photodynamic therapy on the immune response, Photodiagn. Photodyn. Ther., 2005, 2, 283–298

    Article  CAS  Google Scholar 

  3. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905

    Article  CAS  PubMed  Google Scholar 

  4. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  PubMed  Google Scholar 

  5. B.W. Henderson, S. M. Waldow, T. S. Mang, W. R. Potter, P. B. Malone and T. J. Dougherty, Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy, Cancer Res., 1985, 45, 572–576.

    CAS  PubMed  Google Scholar 

  6. M. Korbelik and G. Krosl, Photofrin accumulation in malignant and host cell populations of a murine fibrosarcoma, Photochem. Photobiol., 1995, 62, 162–168

    Article  CAS  PubMed  Google Scholar 

  7. M. Korbelik and G. Krosl, Accumulation of benzoporphyrin derivative in malignant and host cell populations of the murine RIF tumor, Cancer Lett., 1995, 97, 249–254.

    Article  CAS  PubMed  Google Scholar 

  8. D. W. Hunt, H. J. Jiang, J. G. Levy and A. H. Chan, Sensitivity of activatedmurine peritonealmacrophages to photodynamic killing with benzoporphyrin derivative, Photochem. Photobiol., 1995, 61, 417–421

    Article  CAS  PubMed  Google Scholar 

  9. E. A. Hryhorenko, K. Rittenhouse-Diakun, N. S. Harvey, J. Morgan, C. C. Stewart and A. R. Oseroff, Characterization of endogenous protoporphyrin IX induced by delta-aminolevulinic acid in resting and activated peripheral blood lymphocytes by four-color flow cytometry, Photochem. Photobiol., 1998, 67, 565–572

    Article  CAS  PubMed  Google Scholar 

  10. C. M. West, D. C. West, S. Kumar and J. V. Moore, A comparison of the sensitivity to photodynamic treatment of endothelial and tumour cells in different proliferative states, Int. J. Radiat. Biol., 1990, 58, 145–156.

    Article  CAS  PubMed  Google Scholar 

  11. D. Nowis, M. Makowski, T. Stoklosa, M. Legat, T. Issat and J. Golab, Direct tumor damage mechanisms of photodynamic therapy, Acta Biochim. Pol., 2005, 52, 339–352.

    Article  CAS  PubMed  Google Scholar 

  12. A. W. Girotti, Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms, J. Photochem. Photobiol., B, 2001, 63, 103–113.

    Article  CAS  Google Scholar 

  13. E. Buytaert, M. Dewaele and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochim. Biophys. Acta, 2007, 1776, 86–107.

    CAS  PubMed  Google Scholar 

  14. A. Wright, W. A. Bubb, C. L. Hawkins and M. J. Davies, Singlet oxygenmediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues, Photochem. Photobiol., 2002, 76, 35–46.

    Article  CAS  PubMed  Google Scholar 

  15. V. V. Agon, W. A. Bubb, A. Wright, C. L. Hawkins and M. J. Davies, Sensitizer-mediated photooxidation of histidine residues: evidence for the formation of reactive side-chain peroxides, Free Radical Biol. Med., 2006, 40, 698–710.

    Article  CAS  Google Scholar 

  16. N. Ahmad, K. Kalka and H. Mukhtar, In vitro and in vivo inhibition of epidermal growth factor receptor-tyrosine kinase pathway by photodynamic therapy, Oncogene, 2001, 20, 2314–2317.

    Article  CAS  PubMed  Google Scholar 

  17. L. Y. Xue, S. M. Chiu and N. L. Oleinick, Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4, Oncogene, 2001, 20, 3420–3427

    Article  CAS  PubMed  Google Scholar 

  18. W. Liu, A. R. Oseroff and H. Baumann, Photodynamic therapy causes cross-linking of signal transducer and activator of transcription proteins and attenuation of interleukin-6 cytokine responsiveness in epithelial cells, Cancer Res., 2004, 64, 6579–6587.

    Article  CAS  PubMed  Google Scholar 

  19. B. Magi, A. Ettorre, S. Liberatori, L. Bini, M. Andreassi, S. Frosali, P. Neri, V. Pallini and A. Di Stefano, Selectivity of protein carbonylation in the apoptotic response to oxidative stress associated with photodynamic therapy: a cell biochemical and proteomic investigation, Cell Death Differ., 2004, 11, 842–852.

    Article  CAS  PubMed  Google Scholar 

  20. T. W. Wong, E. Tracy, A. R. Oseroff and H. Baumann, Photodynamic therapy mediates immediate loss of cellular responsiveness to cytokines and growth factors, Cancer Res., 2003, 63, 3812–3818.

    CAS  PubMed  Google Scholar 

  21. L. H. Wei, H. Baumann, E. Tracy, Y. Wang, A. Hutson, S. Rose-John and B. W. Henderson, Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling, Br. J. Cancer, 2007, 97, 1513–1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Szokalska, M. Makowski, D. Nowis, G. M. Wilczynski, M. Kujawa, C. Wojcik, I. Mlynarczuk-Bialy, P. Salwa, J. Bil, S. Janowska, P. Agostinis, T. Verfaillie, M. Bugajski, J. Gietka, T. Issat, E. Glodkowska, P. Mrowka, T. Stoklosa, M. R. Hamblin, P. Mroz, M. Jakobisiak and J. Golab, Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response, Cancer Res., 2009, 69, 4235–4243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. Martinon, X. Chen, A. H. Lee and L. H. Glimcher, TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages, Nat. Immunol., 2010, 11, 411–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. Furnkranz and N. Leitinger, Regulation of inflammatory responses by oxidized phospholipids: structure-function relationships, Curr. Pharm. Des., 2004, 10, 915–921

    Article  CAS  PubMed  Google Scholar 

  25. A. Furnkranz, A. Schober, V. N. Bochkov, P. Bashtrykov, G. Kronke, A. Kadl, B. R. Binder, C. Weber and N. Leitinger, Oxidized phospholipids trigger atherogenic inflammation in murine arteries, Arterioscler., Thromb., Vasc. Biol., 2005, 25, 633–638.

    Article  CAS  Google Scholar 

  26. D. Kessel, M. G. Vicente and J. J. Reiners, Jr., Initiation of apoptosis and autophagy by photodynamic therapy, Lasers Surg.Med., 2006, 38, 482–488.

    Article  PubMed  PubMed Central  Google Scholar 

  27. J. J. Reiners, Jr., P. Agostinis, K. Berg, N. L. Oleinick and D. Kessel, Assessing autophagy in the context of photodynamic therapy, Autophagy, 2010, 6, 7–18.

    Article  CAS  PubMed  Google Scholar 

  28. A. D. Garg, D. Nowis, J. Golab, P. Vandenabeele, D. V. Krysko and P. Agostinis, Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation, Biochim. Biophys.Acta, 2010, 1805, 53–71.

    CAS  PubMed  Google Scholar 

  29. M. Korbelik, J. Sun and I. Cecic, Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response, Cancer Res., 2005, 65, 1018–1026

    CAS  PubMed  Google Scholar 

  30. F. Zhou, D. Xing and W.R. Chen, Regulation of HSP70 on activatingmacrophages using PDT-induced apoptotic cells, Int. J. Cancer, 2009, 125, 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C. Volanti, J. Y. Matroule and J. Piette, Involvement of oxidative stress in NF-kappaB activation in endothelial cells treated by photodynamic therapy, Photochem. Photobiol., 2002, 75, 36–45

    Article  CAS  PubMed  Google Scholar 

  32. J. Sun, I. Cecic, C. S. Parkins and M. Korbelik, Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours, Photochem. Photobiol. Sci., 2002, 1, 690–695.

    Article  CAS  PubMed  Google Scholar 

  33. S. Evans, W. Matthews, R. Perry, D. Fraker, J. Norton and H. I. Pass, Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages, J. Natl. Cancer Inst., 1990, 82, 34–39.

    Article  CAS  PubMed  Google Scholar 

  34. N. Yamamoto, J. K. Hoober and S. Yamamoto, Tumoricidal capacities of macrophages photodynamically activated with hematoporphyrin derivative, Photochem. Photobiol., 1992, 56, 245–250

    Article  CAS  PubMed  Google Scholar 

  35. N. Yamamoto, T.W. Sery, J. K. Hoober, N. P. Willett and D. D. Lindsay, Effectiveness of photofrin II in activation of macrophages and in vitro killing of retinoblastoma cells, Photochem. Photobiol., 1994, 60, 160–164.

    Article  CAS  PubMed  Google Scholar 

  36. S. Coutier, L. Bezdetnaya, S. Marchal, V. Melnikova, I. Belitchenko, J. L. Merlin and F. Guillemin, Foscan (mTHPC) photosensitized macrophage activation: enhancement of phagocytosis, nitric oxide release and tumour necrosis factor-alpha-mediated cytolytic activity, Br. J. Cancer, 1999, 81, 37–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. T. N. Demidova and M. R. Hamblin, Macrophage-targeted photodynamic therapy, Int. J. Immunopathol. Pharmacol., 2004, 17, 117–126.

    Article  CAS  PubMed  Google Scholar 

  38. M. O. Obochi, L. G. Ratkay and J. G. Levy, Prolonged skin allograft survival after photodynamic therapy associated with modification of donor skin antigenicity, Transplantation, 1997, 63, 810–817

    Article  CAS  PubMed  Google Scholar 

  39. D. E. King, H. Jiang, G. O. Simkin, M. O. Obochi, J. G. Levy and D. W. Hunt, Photodynamic alteration of the surface receptor expression pattern of murine splenic dendritic cells, Scand. J. Immunol., 1999, 49, 184–192.

    Article  CAS  PubMed  Google Scholar 

  40. E. A. Hryhorenko, A. R. Oseroff, J. Morgan and K. Rittenhouse-Diakun, Antigen specific and nonspecific modulation of the immune response by aminolevulinic acid based photodynamic therapy, Immunopharmacology, 1998, 40, 231–240.

    Article  CAS  PubMed  Google Scholar 

  41. D. W. Hunt, H. Jiang, D. J. Granville, A. H. Chan, S. Leong and J. G. Levy, Consequences of the photodynamic treatment of resting and activated peripheral T lymphocytes, Immunopharmacology, 1999, 41, 31–44.

    Article  CAS  PubMed  Google Scholar 

  42. H. Jiang, D. J. Granville, B. M. McManus, J. G. Levy and D. W. Hunt, Selective depletion of a thymocyte subset in vitro with an immunomodulatory photosensitizer, Clin. Immunol., 1999, 91, 178–187.

    Article  CAS  PubMed  Google Scholar 

  43. A. P. Castano, P. Mroz, M. X. Wu and M. R. Hamblin, Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 5495–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. O. Gollnick, L. Vaughan and B. W. Henderson, Generation of effective antitumor vaccines using photodynamic therapy, Cancer Res., 2002, 62, 1604–1608

    CAS  PubMed  Google Scholar 

  45. A. Jalili, M. Makowski, T. Switaj, D. Nowis, G. M. Wilczynski, E. Wilczek, M. Chorazy-Massalska, A. Radzikowska, W. Maslinski, L. Bialy, J. Sienko, A. Sieron, M. Adamek, G. Basak, P. Mroz, I. W. Krasnodebski, M. Jakobisiak and J. Golab, Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells, Clin. Cancer Res., 2004, 10, 4498–4508

    Article  CAS  PubMed  Google Scholar 

  46. T. Kushibiki, T. Tajiri, Y. Tomioka and K. Awazu, Photodynamic therapy induces interleukin secretion from dendritic cells, Int. J. Clin. Exp. Med., 2010, 3, 110–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Korbelik, B. Stott and J. Sun, Photodynamic therapy-generated vaccines: relevance of tumour cell death expression, Br. J. Cancer, 2007, 97, 1381–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. H. Zhang, W. Ma and Y. Li, Generation of effective vaccines against liver cancer by using photodynamic therapy, Lasers Med. Sci., 2008, 24, 549–552.

    Article  PubMed  Google Scholar 

  49. S. Karrer, A. K. Bosserhoff, P. Weiderer, M. Landthaler and R. M. Szeimies, Influence of 5-aminolevulinic acid and red light on collagen metabolism of human dermal fibroblasts, J. Invest. Dermatol., 2003, 120, 325–331

    Article  CAS  PubMed  Google Scholar 

  50. A. Ferrario, C. F. Chantrain, K. von Tiehl, S. Buckley, N. Rucker, D. R. Shalinsky, H. Shimada, Y. A. DeClerck and C. J. Gomer, The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model, Cancer Res., 2004, 64, 2328–2332.

    Article  CAS  PubMed  Google Scholar 

  51. S. Karrer, A. K. Bosserhoff, P. Weiderer, M. Landthaler and R. M. Szeimies, Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts, Br. J. Dermatol., 2004, 151, 776–783.

    Article  CAS  PubMed  Google Scholar 

  52. E. S. Chu, T. K. Wong and C.M. Yow, Photodynamic effect in medulloblastoma: downregulation of matrix metalloproteinases and human telomerase reverse transcriptase expressions, Photochem. Photobiol. Sci., 2008, 7, 76–83

    Article  CAS  PubMed  Google Scholar 

  53. H. Y. Du, M. Olivo, R. Mahendran, Q. Huang, H. M. Shen, C. N. Ong and B. H. Bay, Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells, Cell. Mol. Life Sci., 2007, 64, 979–988.

    Article  CAS  PubMed  Google Scholar 

  54. J. Heckenkamp, M. Aleksic, M. Gawenda, S. Breuer, J. Brabender, A. Mahdavi, F. Aydin and J. S. Brunkwall, Modulation of human adventitial fibroblast function by photodynamic therapy of collagen matrix, Eur. J. Vasc. Endovasc. Surg., 2004, 28, 651–659.

    Article  CAS  PubMed  Google Scholar 

  55. P. Margaron, R. Sorrenti and J.G. Levy, Photodynamic therapy inhibits cell adhesion without altering integrin expression, Biochim. Biophys. Acta, Mol. Cell Res., 1997, 1359, 200–210

    Article  CAS  PubMed  Google Scholar 

  56. J. M. Runnels, N. Chen, B. Ortel, D. Kato and T. Hasan, BPD-MA-mediated photosensitization in vitro and in vivo: cellular adhesion and beta1 integrin expression in ovarian cancer cells, Br. J. Cancer, 1999, 80, 946–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. Uzdensky, A. Juzeniene, L. W. Ma and J. Moan, Photodynamic inhibition of enzymatic detachment of human cancer cells from a substratum, Biochim. Biophys. Acta, Gen. Subj., 2004, 1670, 1–11

    Article  CAS  Google Scholar 

  58. A. B. Uzdensky, A. Juzeniene, E. Kolpakova, G. O. Hjortland, P. Juzenas and J. Moan, Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum, Biochem. Biophys. Res. Commun., 2004, 322, 452–457.

    Article  CAS  PubMed  Google Scholar 

  59. W. J. de Vree, A. N. Fontijne-Dorsman, J. F. Koster and W. Sluiter, Photodynamic treatment of human endothelial cells promotes the adherence of neutrophils in vitro, Br. J. Cancer, 1996, 73, 1335–1340.

    Article  PubMed  PubMed Central  Google Scholar 

  60. G. Krosl, M. Korbelik and G. J. Dougherty, Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy, Br. J. Cancer, 1995, 71, 549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. H. W. Lim, L. Young, M. Hagan and I. Gigli, Delayed phase of hematoporphyrininduced phototoxicity: modulation by complement, leukocytes, and antihistamines, J. Invest. Dermatol., 1985, 84, 114–117.

    Article  CAS  PubMed  Google Scholar 

  62. I. Cecic and M. Korbelik, Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors, Cancer Lett., 2002, 183, 43–51.

    Article  CAS  PubMed  Google Scholar 

  63. J. Golab, G. Wilczynski, R. Zagozdzon, T. Stoklosa, A. Dabrowska, J. Rybczynska, M. Wasik, E. Machaj, T. Olda, K. Kozar, R. Kaminski, A. Giermasz, A. Czajka, W. Lasek, W. Feleszko and M. Jakobisiak, Potentiation of the anti-tumour effects of Photofrin-based photodynamic therapy by localized treatment with G-CSF, Br. J. Cancer, 2000, 82, 1485–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. I. Cecic, C. S. Parkins and M. Korbelik, Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors, Photochem. Photobiol., 2001, 74, 712–720.

    Article  CAS  PubMed  Google Scholar 

  65. S. O. Gollnick, S. S. Evans, H. Baumann, B. Owczarczak, P. Maier, L. Vaughan, W. C. Wang, E. Unger and B. W. Henderson, Role of cytokines in photodynamic therapy-induced local and systemic inflammation, Br. J. Cancer, 2003, 88, 1772–1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. C. Fady, D. Reisser and F. Martin, Non-activated rat neutrophils kill syngeneic colon tumor cells by the release of a low molecular weight factor, Immunobiology, 1990, 181, 1–12.

    Article  CAS  PubMed  Google Scholar 

  67. M. Korbelik and I. Cecic, Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy, Cancer Lett., 1999, 137, 91–98.

    Article  CAS  PubMed  Google Scholar 

  68. W. J. de Vree, M. C. Essers, H. S. de Bruijn, W. M. Star, J. F. Koster and W. Sluiter, Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo, Cancer Res., 1996, 56, 2908–2911.

    PubMed  Google Scholar 

  69. G. Krosl, M. Korbelik, J. Krosl and G. J. Dougherty, Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocyte-macrophage colony-stimulating factor, Cancer Res., 1996, 56, 3281–3286.

    CAS  PubMed  Google Scholar 

  70. J. Kolls, J. Xie, R. LeBlanc, T. Malinski, S. Nelson, W. Summer and S. S. Greenberg, Rapid induction of messenger RNA for nitric oxide synthase II in rat neutrophils in vivo by endotoxin and its suppression by prednisolone, Proc. Soc. Exp. Biol. Med., 1994, 205, 220–229.

    Article  CAS  PubMed  Google Scholar 

  71. H. S. de Bruijn, W. Sluiter, A. Van Der Ploeg-van den Heuvel, H. J. Sterenborg and D. J. Robinson, Evidence for a bystander role of neutrophils in the response to systemic 5-aminolevulinic acid-based photodynamic therapy, Photodermatol., Photoimmunol. Photomed., 2006, 22, 238–246.

    Article  Google Scholar 

  72. W. J. de Vree, M. C. Essers, J. F. Koster and W. Sluiter, Role of interleukin 1 and granulocyte colony-stimulating factor in photofrin-based photodynamic therapy of rat rhabdomyosarcoma tumors, Cancer Res., 1997, 57, 2555–2558.

    PubMed  Google Scholar 

  73. I. Cecic, B. Stott and M. Korbelik, Acute phase response-associated systemic neutrophil mobilization in mice bearing tumors treated by photodynamic therapy, Int. Immunopharmacol., 2006, 6, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  74. R.C. Brooke, A. Sinha, M.K. Sidhu, R. E. Watson, M. K. Church, P. S. Friedmann, G. F. Clough and L. E. Rhodes, Histamine is released following aminolevulinic acid-photodynamic therapy of human skin and mediates an aminolevulinic acid dose-related immediate inflammatory response, J. Invest. Dermatol., 2006, 126, 2296–2301

    Article  CAS  PubMed  Google Scholar 

  75. M. Korbelik and I. Cecic, Mechanism of tumor destruction by photodynamic therapy, in Handbook of Photochemistry and Photobiology, ed. H. S. Nalwa, American Scientific Publishers, Stevenson Ranch (California), 2003, vol. 4, ch. 2, pp. 39–77.

    Google Scholar 

  76. S. Merchant, N. Huang and M. Korbelik, Expression of complement and pentraxin proteins in acute phase response elicited by tumor photodynamic therapy: The engagement of adrenal hormones, Int. Immunopharmacol., 2010, 10, 1595–1601.

    Article  CAS  PubMed  Google Scholar 

  77. M. Korbelik, V. R. Naraparaju and N. Yamamoto, Macrophagedirected immunotherapy as adjuvant to photodynamic therapy of cancer, Br. J. Cancer, 1997, 75, 202–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. M. Korbelik and I. Cecic, Enhancement of tumour response to photodynamic therapy by adjuvant mycobacterium cell-wall treatment, J. Photochem. Photobiol., B, 1998, 44, 151–158.

    Article  CAS  Google Scholar 

  79. I. Cecic, J. Sun and M. Korbelik, Role of complement anaphylatoxin C3a in photodynamic therapy-elicited engagement of host neutrophils and other immune cells, Photochem. Photobiol., 2006, 82, 558–562.

    Article  CAS  PubMed  Google Scholar 

  80. B. Stott and M. Korbelik, Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy, CancerImmunol. Immunother., 2006, 56, 649–658

    Article  CAS  Google Scholar 

  81. M. Korbelik, Complement upregulation in photodynamic therapy-treated tumors: Role of Toll -like receptor pathway and NFkappaB, Cancer Lett., 2009, 281, 232–238.

    Article  CAS  PubMed  Google Scholar 

  82. M. Korbelik and I. Cecic, Complement activation cascade and its regulation: relevance for the response of solid tumors to photodynamic therapy, J. Photochem. Photobiol., B, 2008, 93, 53–59.

    Article  CAS  Google Scholar 

  83. I. Cecic, A. I. Minchinton and M. Korbelik, The impact of complement activation on tumor oxygenation during photodynamic therapy, Photochem. Photobiol., 2007, 83, 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  84. M. Korbelik, J. Sun, I. Cecic and K. Serrano, Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors, Photochem. Photobiol. Sci., 2004, 3, 812–816

    Article  CAS  PubMed  Google Scholar 

  85. M. Korbelik and P. D. Cooper, Potentiation of photodynamic therapy of cancer by complement: the effect of gamma-inulin, Br. J. Cancer, 2006, 96, 67–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. D. Akramiene, G. Grazeliene, J. Didziapetriene and E. Kevelaitis, Treatment of Lewis lung carcinoma by photodynamic therapy and glucan from barley, Medicina (Kaunas), 2009, 45, 480–485

    Article  Google Scholar 

  87. D. Akramiene, C. Aleksandraviciene, G. Grazeliene, R. Zalinkevicius, K. Suziedelis, J. Didziapetriene, U. Simonsen, E. Stankevicius and E. Kevelaitis, Potentiating effect of beta-glucans on photodynamic therapy of implanted cancer cells in mice, Tohoku J. Exp. Med., 2010, 220, 299–306.

    Article  CAS  PubMed  Google Scholar 

  88. M. A. Brantley, Jr., S. L. Edelstein, J. M. King, M. R. Plotzke, R. S. Apte, S. M. Kymes and A. Shiels, Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to photodynamic therapy, Eye (London), 2009, 23, 626–631.

    Article  CAS  Google Scholar 

  89. S. S. Yom, T. M. Busch, J. S. Friedberg, E. P. Wileyto, D. Smith, E. Glatstein and S. M. Hahn, Elevated serum cytokine levels in mesothelioma patients who have undergone pleurectomy or extrapleural pneumonectomy and adjuvant intraoperative photodynamic therapy, Photochem. Photobiol., 2003, 78, 75–81.

    Article  CAS  PubMed  Google Scholar 

  90. D. A. Bellnier, Potentiation of photodynamic therapy in mice with recombinant human tumor necrosis factor-alpha, J. Photochem. Photobiol., B, 1991, 8, 203–210.

    Article  CAS  Google Scholar 

  91. M. Korbelik, PDT-associated host response and its role in the therapy outcome, Lasers Surg. Med., 2006, 38, 500–508.

    Article  PubMed  Google Scholar 

  92. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson and R. Hilf, Oxygen consumption and diffusion effects in photodynamic therapy, Radiat. Res., 1991, 126, 296–303

    Article  CAS  PubMed  Google Scholar 

  93. S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma and T. Hasan, In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model, Cancer Res., 1999, 59, 6164–6170

    CAS  PubMed  Google Scholar 

  94. T. M. Sitnik and B. W. Henderson, The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy, Photochem. Photobiol., 1998, 67, 462–466.

    Article  CAS  PubMed  Google Scholar 

  95. T. M. Sitnik, J. A. Hampton and B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br. J. Cancer, 1998, 77, 1386–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney and J. Morgan, Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors, Cancer Res., 2004, 64, 2120–2126.

    Article  CAS  PubMed  Google Scholar 

  97. P. C. Kousis, B.W. Henderson, P. G. Maier and S. O. Gollnick, Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils, Cancer Res., 2007, 67, 10501–10510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. E. Kabingu, A. R. Oseroff, G. E. Wilding and S.O. Gollnick, Enhanced systemic immune reactivity to a Basal cell carcinoma associated antigen following photodynamic therapy, Clin. Cancer Res., 2009, 15, 4460–4466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. B. W. Henderson, T. M. Sitnik-Busch and L. A. Vaughan, Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase inhibition is fluence rate dependent, Photochem. Photobiol., 1999, 70, 64–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Firczuk.

Additional information

This article is published as part of a themed issue on immunological aspects and drug delivery technologies in PDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firczuk, M., Nowis, D. & Gołąb, J. PDT-induced inflammatory and host responses. Photochem Photobiol Sci 10, 653–663 (2011). https://doi.org/10.1039/c0pp00308e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00308e

Navigation