Skip to main content
Log in

Stereoselective interaction of ketoprofen enantiomers with β-cyclodextrin: ground state binding and photochemistry

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The chiral recognition ability of β-cyclodextrin (β-CyD) vs. S- and R-ketoprofen (KP) enantiomers has been studied by circular dichroism (CD), isothermal titration calorimetry (ITC) and NMR. The association constants of the 1 ∶ 1 complexes obtained from CD and ITC titration experiments resulted to be the same for both enantiomers within the experimental uncertainty. Well differentiated CD spectra were determined for the diastereomeric complexes. Their structure was assessed by molecular mechanics and molecular dynamics calculations combined with quantum mechanical calculation of the induced rotational strengths in the low energy KP:β-CyD associates, upon comparison of the calculated quantities with the corresponding experimental CD. The inclusion geometry is similar for both enantiomers with the aromatic carbonyl inserted in the CyD cavity, the monosubstituted ring close to the primary CyD rim and the carboxylate group exposed to the solvent close to the secondary rim. NMR spectra fully confirmed the geometry of the diastereomeric complexes. Tiny structural differences were sensibly probed by CD and confirmed by 2D ROESY spectra. Photoproduct studies with UV absorption and MS detection as well as nanosecond laser flash photolysis evidenced lack of chiral discrimination in the photodecarboxylation of KP within the cavity and formation of a photoaddition product to β-CyD by secondary photochemistry of 3-ethylbenzophenone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bosca, M. L. Marin and M. A. Miranda, Photochem. Photobiol., 2001, 74, 637–655.

    Article  CAS  Google Scholar 

  2. P. Ghezzi, G. Melillo, C. Meazza, S. Sacco, L. Pellegrini, C. Asti, S. Porzio, A. Marullo, V. Sabbatini, G. Caselli and R. Bertini, J. Pharmacol. Exp. Ther., 1998, 287, 969–974.

    CAS  PubMed  Google Scholar 

  3. T. Suzuki, T. Okita, Y. Osanai and T. Ichimura, J. Phys. Chem. B, 2008, 112, 15212–15216.

    Article  CAS  Google Scholar 

  4. C. D. Borsarelli, S. E. Braslavsky, S. Sortino, G. Marconi and S. Monti, Photochem. Photobiol., 2000, 72, 163–171.

    Article  CAS  Google Scholar 

  5. S. Monti, S. Sortino, G. De Guidi and G. Marconi, New J. Chem., 1998, 22, 599–604.

    Article  CAS  Google Scholar 

  6. S. Monti, S. Sortino, G. De Guidi and G. Marconi, J. Chem. Soc., Faraday Trans., 1997, 93, 2269–2275.

    Article  CAS  Google Scholar 

  7. L. J. Martinez and J. C. Scaiano, J. Am. Chem. Soc., 1997, 119, 11066–11070.

    Article  CAS  Google Scholar 

  8. S. Monti, I. Manet, F. Manoli, R. Morrone, G. Nicolosi and S. Sortino, Photochem. Photobiol., 2006, 82, 13–19.

    Article  CAS  Google Scholar 

  9. S. Monti, F. Manoli, S. Sortino, R. Morrone and G. Nicolosi, Phys. Chem. Chem. Phys., 2005, 7, 4002–4008.

    Article  CAS  Google Scholar 

  10. C. Festa, N. Levi-Minzi and M. Zandomeneghi, Gazz. Chim. Ital., 1996, 126, 599–603.

    CAS  Google Scholar 

  11. S. Monti, I. Manet, F. Manoli and S. Sortino, Photochem. Photobiol. Sci., 2007, 6, 462–470.

    Article  CAS  Google Scholar 

  12. S. Monti, S. Ottani, F. Manoli, I. Manet, F. Scagnolari, B. Zambelli and G. Marconi, Phys. Chem. Chem. Phys., 2009, 11, 9104–9113.

    Article  CAS  Google Scholar 

  13. S. Monti, I. Manet, F. Manoli, S. Ottani and G. Marconi, Photochem. Photobiol. Sci., 2009, 8, 805–813.

    Article  CAS  Google Scholar 

  14. S. Monti, I. Manet, F. Manoli and G. Marconi, Phys. Chem. Chem. Phys., 2008, 10, 6597–6606.

    Article  CAS  Google Scholar 

  15. S. Monti, I. Manet, F. Manoli, M. L. Capobianco and G. Marconi, J. Phys. Chem. B, 2008, 112, 5742–5754.

    Article  CAS  Google Scholar 

  16. H. Huhnerfuss and M. R. Shah, J. Chromatogr., A, 2009, 1216, 481–502.

    Article  Google Scholar 

  17. E. L. Izake, J. Pharm. Sci., 2007, 96, 1659–1676.

    Article  CAS  Google Scholar 

  18. C. J. Easton and S. F. Lincoln, Chem. Soc. Rev., 1996, 25, 163–170.

    Article  CAS  Google Scholar 

  19. A. M. Abushoffa, M. Fillet, P. Hubert and J. Crommen, J. Chromatogr., A, 2002, 948, 321–329.

    Article  CAS  Google Scholar 

  20. E. Ameyibor and J. T. Stewart, J. Pharm. Biomed. Anal., 1998, 17, 83–88.

    Article  CAS  Google Scholar 

  21. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch and C. Perez-Maseda, J. Chromatogr., A, 1998, 799, 301–307.

    Article  CAS  Google Scholar 

  22. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch and C. Perez-Maseda, J. Chromatogr., A, 1998, 793, 165–175.

    Article  CAS  Google Scholar 

  23. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch and C. Perez-Maseda, Anal. Chim. Acta, 2000, 407, 233–245.

    Article  CAS  Google Scholar 

  24. M. Blanco, J. M. Gonzalez, E. Torras and I. Valverde, Anal. Bioanal. Chem., 2003, 375, 157–163.

    Article  CAS  Google Scholar 

  25. S. Rozou, S. Michaleas and E. Antoniadou-Vyza, J. Chromatogr., A, 2005, 1087, 86–94.

    Article  CAS  Google Scholar 

  26. G. Marconi, S. Monti, F. Manoli, A. Degli Esposti and B. Mayer, Chem. Phys. Lett., 2004, 383, 566–571.

    Article  CAS  Google Scholar 

  27. G. Marconi, S. Monti, F. Manoli, A. Degli Esposti and A. Guerrini, Helv. Chim. Acta, 2004, 87, 2368–2377.

    Article  CAS  Google Scholar 

  28. P. Bortolus, G. Marconi, S. Monti and B. Mayer, J. Phys. Chem. A, 2002, 106, 1686–1694.

    Article  CAS  Google Scholar 

  29. L. L. Costanzo, G. De Guidi, G. Condorelli, A. Cambria and M. Fama, Photochem. Photobiol., 1989, 50, 359–365.

    Article  CAS  Google Scholar 

  30. Insight II, Accelrys software Inc., San Diego, CA, 2005.

    Google Scholar 

  31. W. Chen, C. E. Chang and M. K. Gilson, Biophys. J., 2004, 87, 3035–3049.

    Article  CAS  Google Scholar 

  32. I. J. Tinoco, Adv. Chem. Phys., 1962, 4, 113–161.

    Google Scholar 

  33. Hyperchem 6.02, Hypercube Inc., Gainesville, FL, 2000.

  34. J. H. Obbink and A. M. F. Hezemans, Chem. Phys. Lett., 1977, 50,133–137.

    Article  CAS  Google Scholar 

  35. E. Skordi, I. D. Wilson, J. C. Lindon and J. K. Nicholson, Xenobiotica, 2004, 34, 1075–1089.

    Article  CAS  Google Scholar 

  36. H. J. Schneider, F. Hacket, V. Rudiger and H. Ikeda, Chem. Rev., 1998, 98, 1755–1785.

    Article  CAS  Google Scholar 

  37. 80–90% of KP is complexed.

  38. In ref. 5 the rate constant k2 had been assigned to the combination reaction of the radical pair made by the KP ketyl radical and the b-CyD radical, resulting from the H-abstraction from ß-CyD by the ketone triplet, to give a covalent KP-ß-CyD adduct with γmax = 205 nm.

  39. S. Monti, N. Camaioni and P. Bortolus, Photochem. Photobiol., 1991, 54, 577–584.

    Article  CAS  Google Scholar 

  40. S. Monti, L. Flamigni, A. Martelli and P. Bortolus, J. Phys. Chem., 1988, 92, 4447–4451.

    Article  CAS  Google Scholar 

  41. G. Cosa, L. Llauger, J. C. Scaiano and M. A. Miranda, Org. Lett., 2002, 4, 3083–3085.

    Article  CAS  Google Scholar 

  42. H. Suzuki, T. Suzuki, T. Ichimura, K. Ikesue and M. Sakai, J. Phys. Chem. B, 2007, 111, 3062–3068.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marconi, G., Mezzina, E., Manet, I. et al. Stereoselective interaction of ketoprofen enantiomers with β-cyclodextrin: ground state binding and photochemistry. Photochem Photobiol Sci 10, 48–59 (2011). https://doi.org/10.1039/c0pp00262c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00262c

Navigation