Skip to main content
Log in

Photosensitized addition of isopropanol to furanones in a 365 nm UV-LED microchip

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The DMBP-sensitized addition of isopropanol to furanones was studied in a novel LED-driven microchip reactor. Complete conversions were achieved after just 2.5 to 5 min of irradiation with 6 × 365 nm high-power LEDs. The results were compared to analogous experiments using a conventional batch reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. N. Hoffmann Chem. Rev., 2008, 108, 1052.

    Article  CAS  PubMed  Google Scholar 

  2. M. Demuth, G. Mikhail Synthesis, 1989 145.

    Google Scholar 

  3. P. Margaretha Top. Curr. Chem., 1982, 103, 1.

    Article  Google Scholar 

  4. A. M. Braun, M. Maurette and E. Oliveros, Photochemical Technology, Wiley, Chichester, 1991.

    Google Scholar 

  5. K. Gollnick Chim. Ind., 1982, 63, 156.

    Google Scholar 

  6. M. Fischer Angew. Chem., Int. Ed. Engl., 1978, 17, 16.

    Article  Google Scholar 

  7. A recent account shows that the perceived disadvantages of photochemical synthesis can be easily overcome, see: C. L. Ciana, C. G. Bochet Chimia, 2007, 61, 650.

    Article  CAS  Google Scholar 

  8. T. Fukuyama, Md. T. Rahman, M. Sato, I. Ryu Synlett, 2008 151.

    Google Scholar 

  9. K. Jähnisch, V. Hessel, H. Löwe, M. Baerns Angew. Chem., Int. Ed., 2004, 43, 406.

    Article  CAS  Google Scholar 

  10. E. E. Coyle, M. Oelgemöller Photochem. Photobiol. Sci., 2008, 7, 1313.

    Article  CAS  PubMed  Google Scholar 

  11. E. E. Coyle, M. Oelgemöller Chem. Technol., 2008, 5, T95.

    Google Scholar 

  12. Y. Matsushita, T. Ichimura, N. Ohba, S. Kumada, K. Sakada, T. Suzuki, H. Tanibata, T. Murata Pure Appl. Chem., 2007, 79, 1959.

    Article  CAS  Google Scholar 

  13. T. Ichimura, Y. Matsushita, K. Sakeda and T. Suzuki, in Microchemical Engineering in Practice, ed. T. R. Dietrich, Wiley, Hoboken, 2009, p. 385.

  14. G. Kreisel, S. Meyer, D. Tietze, T. Fidler, R. Gorges, A. Kirsch, B. Schäfer, S. Rau Chem. Ing. Tech., 2007, 79, 153.

    Article  CAS  Google Scholar 

  15. S. Landgraf Spectrochim. Acta, Part A, 2001, 57, 2029.

    Article  CAS  Google Scholar 

  16. K. Ohga, T. Matsuo J. Org. Chem., 1974, 39, 106.

    Article  CAS  Google Scholar 

  17. N. Hoffmann Tetrahedron: Asymmetry, 1994, 5, 879.

    Article  CAS  Google Scholar 

  18. So far, UV-LEDs have mainly been utilized in photocatalytic reactions, see

  19. S. Füldner, R. Mild, H. I. Siegmund, J. A. Schroeder, M. Gruber, B. König Green Chem., 2010, 12, 400.

    Article  Google Scholar 

  20. S. Vilhunen, E. V. Rokhina, J. Virkutyte J. Environ. Eng., 2010, 136, 274.

    Article  CAS  Google Scholar 

  21. Y. Matsushita, M. Iwasawa, T. Suzuki, T. Ichimura Chem. Lett., 2009, 38, 846.

    Article  CAS  Google Scholar 

  22. Y. Matsushita, N. Ohba, T. Suzuki, T. Ichimura Catal. Today, 2008, 132, 153.

    Article  CAS  Google Scholar 

  23. A. A. Lapkin, V. M. Boddu, G. N. Aliev, B. Goller, S. Polisski, D. Kovalev Chem. Eng. J., 2008, 136, 331.

    Article  CAS  Google Scholar 

  24. H.-W. Chen, Y. Ku, A. Irawan Chemosphere, 2007, 69, 184.

    Article  CAS  PubMed  Google Scholar 

  25. Y. Matsushita, N. Ohba, S. Kumada, T. Suzuki, T. Ichimura Catal. Commun., 2007, 8, 2194.

    Article  CAS  Google Scholar 

  26. Y. Matsushita, S. Kumada, K. Wakabayashi, K. Sakeda, T. Ichimura Chem. Lett., 2006, 35, 410.

    Article  CAS  Google Scholar 

  27. D. H. Chen, X. Ye, K. Li Chem. Eng. Technol., 2005, 28, 95.

    Article  CAS  Google Scholar 

  28. R. Gorges, S. Meyer, G. Kreisel J. Photochem. Photobiol., A, 2004, 167, 95.

    Article  CAS  Google Scholar 

  29. D. Harakat, J. Pesch, S. Marinković, N. Hoffmann Org. Biomol. Chem., 2006, 4, 1202.

    Article  CAS  PubMed  Google Scholar 

  30. S. Bertrand, N. Hoffmann, S. Humbel, J. P. Pete J. Org. Chem., 2000, 65, 8690.

    Article  CAS  PubMed  Google Scholar 

  31. S. Bertrand, C. Glapski, N. Hoffmann, J. P. Pete Tetrahedron Lett., 1999, 40, 3169.

    Article  CAS  Google Scholar 

  32. Microchip: Micronit Microfluidics FC_R150.676.2 (Borofloat glass) with a channel width of 150 μm, a depth of 150 μm, a length (meander) of 757 mm and an internal volume of 13 μl; UV-LED: array of 6 × 365 nm high power LEDs (Seoul Optodevice, P8D236, 6 × 75 mW)

  33. General procedure for irradiation in the LED-microchip: A solution of the furanone (0.1 mmol) and DMBP (0.02 mmol) in isopropanol (3 mL) was purged with argon and loaded into a syringe pump. The reaction mixture was pumped through a microchip while irradiated by 6 × 365 nm high power LEDs. After evaporation of the solvent, the conversion rate was determined by 1H-NMR spectroscopy of the crude product. The signal integration for proton in the β-position of 1a–c was compared to the signal integration for the acetal proton of 2a–c. Pure products may be isolated by column chromatography (see ESI)

  34. General procedure for irradiation under batch conditions: A solution of the furanone (0.5 mmol) and DMBP (0.1 mmol) in isopropanol (15 mL) was filled in a Pyrex glass tube (inner diameter: 9 mm) and purged with argon. The tube was stoppered and the reaction mixture was irradiated for 5 min at 350 ± 25 nm (Rayonet RPR-100, equipped with 16 × RPR-3500 Å lamps, 16 × 8 W). After evaporation of the solvent, the conversion rate was determined by 1H-NMR spectroscopy of the crude product. Pure products were isolated by column chromatography (see ESI)

  35. P. J. Wagner, R. J. Truman, A. E. Puchalski, R. Wake J. Am. Chem. Soc., 1986, 108, 7727.

    Article  CAS  PubMed  Google Scholar 

  36. N. J. Pitts Jr., R. L. Letsinger, R. P. Taylor, J. M. Patterson, G. Recktenwald, R. B. Martin J. Am. Chem. Soc., 1959, 81, 1068.

    Article  CAS  Google Scholar 

  37. A. Schönberg, A. Mustafa J. Chem. Soc., 1944 67.

    Google Scholar 

  38. C. Manfrotto, M. Mella, M. Freccero, M. Fagnoni, A. Albini J. Org. Chem., 1999, 64, 5024.

    Article  CAS  PubMed  Google Scholar 

  39. M. Fagnoni, D. Dondi, D. Ravelli, A. Albini Chem. Rev., 2007, 107, 2725.

    Article  CAS  PubMed  Google Scholar 

  40. P. Chin, W. S. Barney, B. A. Pindzola Curr. Opin. Drug Discovery Dev., 2009, 12, 848.

    CAS  Google Scholar 

  41. A. E. Rubin, S. Tummala, D. A. Both, C. Wang, E. J. Delaney Chem. Rev., 2006, 106, 2794.

    Article  CAS  PubMed  Google Scholar 

  42. For a recently developed photochemical microreactor by Abbott Laboratories, see: A. Vasudevan, C. Villamil, J. Trumball, J. Olson, D. Sutherland, J. Pan, S. Djuric Tetrahedron Lett., 2010, 51, 4007.

    Article  CAS  Google Scholar 

  43. V. Hessel, D. Kralisch, U. Krtschil Energy Environ. Sci., 2008, 1, 467.

    Article  CAS  Google Scholar 

  44. D. Kralisch, G. Kreisel Chem. Eng. Sci., 2007, 62, 1094.

    Article  CAS  Google Scholar 

  45. B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade Chem. Rev., 2007, 107, 2300.

    Article  CAS  PubMed  Google Scholar 

  46. S. J. Haswell, P. Watts Green Chem., 2003, 5, 240.

    Article  CAS  Google Scholar 

  47. For further examples of ‘Green Photochemistry’, see

  48. A. Albini and M. Fagnoni, in Green Chemical Reactions (NATO Science for Peace and Security Series, Series C: Environmental Security), ed. P. Tundo and V. Esposito, Springer, Dordrecht, 2008, p. 173.

  49. N. Hoffmann Pure Appl. Chem., 2007, 79, 1949.

    Article  CAS  Google Scholar 

  50. M. Oelgemöller, C. Jung, J. Mattay Pure Appl. Chem., 2007, 79, 1939.

    Article  CAS  Google Scholar 

  51. J. Mattay Chem. Unserer Zeit, 2002, 36, 98.

    Article  CAS  Google Scholar 

  52. A. Sugimoto, T. Fukuyama, Y. Sumino, M. Takagi, I. Ryu Tetrahedron, 2009, 65, 1593.

    Article  CAS  Google Scholar 

  53. J. R. Goodell, J. P. McMullen, N. Zaborenko, J. R. Maloney, C.-X. Ho, K. F. Jensen, J. A. Porco Jr., A. B. Beeler J. Org. Chem., 2009, 74, 6169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S. Werner, R. Seliger, H. Rauter and F. Wissmann, EP 2065387A2, 2009.

    Google Scholar 

  55. A. Sugimoto, Y. Sumino, M. Takagi, T. Fukuyama, I. Ryu Tetrahedron Lett., 2006, 47, 6197.

    Article  CAS  Google Scholar 

  56. S. Meyer, D. Tietze, S. Rau, B. Schäfer, G. Kreisel J. Photochem. Photobiol., A, 2007, 186, 248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Oelgemöller.

Additional information

Electronic supplementary information (ESI) available: Comparison of UV-spectrum of DMBP with emission spectrum of UVA lamp, lightpenetration profile for Pyrex test tube, experimental procedures, NMR spectra of products. See DOI: 10.1039/c0pp00223b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvydkiv, O., Yavorskyy, A., Nolan, K. et al. Photosensitized addition of isopropanol to furanones in a 365 nm UV-LED microchip. Photochem Photobiol Sci 9, 1601–1603 (2010). https://doi.org/10.1039/c0pp00223b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00223b

Navigation