Skip to main content

Advertisement

Log in

Metabolic-targeted therapy with dichloroacetate (DCA): a novel treatment strategy to improve the outcome of photodynamic therapy

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

For the first time we present data showing that metabolic targeted therapy with dichloroacetate (DCA) may improve the outcome of photodynamic therapy. This treatment modality can be easily introduced into clinical practice guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

PpIX:

Protoporphyrin IX

PDT:

Photodynamic therapy

PS:

Photosensitizer

References

  1. M. Kwitniewski, A. Juzeniene, R. Glosnicka and J. Moan, Immunotherapy: a way to improve the therapeutic outcome of photo-dynamic therapy?, Photochem. Photobiol. Sci., 2008, 7, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  2. M. Kwitniewski, D. Jankowski, K. Jaskiewicz, H. Dziadziuszko, A. Juzeniene, J. Moan, L. W. Ma, R. Peksa, D. Kunikowska, A. Graczyk, M. Kwasny, M. Kaliszewski and R. Glosnicka, Photody-namic therapy with 5-aminolevulinic acid and diamino acid derivatives of protoporphyrin IX reduces papillomas in mice without eliminating transformation into squamous cell carcinoma of the skin, Int. J. Cancer, 2009, 125, 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  3. R. H. Xu, H. Pelicano, Y. Zhou, J. S. Carew, L. Feng, K. N. Bhalla, M. J. Keating and P. Huang, Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia, Cancer Res., 2005, 65, 613–621.

    CAS  PubMed  Google Scholar 

  4. C. Ruckenstuhl, S. Buttner, D. Carmona-Gutierrez, T. Eisenberg, G. Kroemer, S. J. Sigrist, K. U. Frohlich and F. Madeo, The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer, PLoS One, 2009, 4, e4592.

  5. E. D. Michelakis, L. Webster and J. R. Mackey, Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer, Br. J. Cancer, 2008, 99, 989–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. W. Stacpoole, L. R. Gilbert, R. E. Neiberger, P. R. Carney, E. Valenstein, D. W. Theriaque and J. J. Shuster, Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate, Pediatrics, 2008, 121, e1223–8.

    Article  Google Scholar 

  7. E. Hassoun, C. Kariya and F. E. Williams, Dichloroacetate-induced developmental toxicity and production of reactive oxygen species in zebrafish embryos, J. Biochem. Mol. Toxicol., 2005, 19, 52–58.

    Article  CAS  PubMed  Google Scholar 

  8. S. Bonnet, S. L. Archer, J. Allalunis-Turner, A. Haromy, C. Beaulieu, R. Thompson, C. T. Lee, G. D. Lopaschuk, L. Puttagunta, S. Bonnet, G. Harry, K. Hashimoto, C. J. Porter, M. A. Andrade, B. Thebaud and E. D. Michelakis, A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth, Cancer Cell, 2007, 11, 37–51.

    Article  CAS  PubMed  Google Scholar 

  9. R. A. Cairns, I. Papandreou, P. D. Sutphin and N. C. Denko, Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 9445–9450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. N. C. Denko, Hypoxia, HIF1 and glucose metabolism in the solid tumour, Nat. Rev. Cancer, 2008, 8, 705–713.

    Article  CAS  PubMed  Google Scholar 

  11. D. Nowis, M. Makowski, T. Stoklosa, M. Legat, T. Issat and J. Golab, Direct tumor damage mechanisms of photodynamic therapy, Acta Biochim. Pol., 2005, 52, 339–352.

    CAS  PubMed  Google Scholar 

  12. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: Part three - Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction, Photodiagn. Photodyn. Ther., 2005, 2, 91–106.

    Article  CAS  Google Scholar 

  13. P. Steinbach, H. Weingandt, R. Baumgartner, M. Kriegmair, F. Hofstadter and R. Knuchel, Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid, Photochem. Photobiol., 2008, 62, 887–895.

    Article  Google Scholar 

  14. N. Schoenfeld, R. Mamet, Y. Nordenberg, M. Shafran, T. Babushkin and Z. Malik, Protoporphyrin biosynthesis in melanoma B16 cells stimulated by 5-aminolevulinic acid and chemical inducers: characterization of photodynamic inactivation, Int. J. Cancer, 2007, 56, 106–112.

    Article  Google Scholar 

  15. J. Hanania and Z. Malik, The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells, Cancer Lett., 1992, 65, 127–131.

    Article  CAS  PubMed  Google Scholar 

  16. S. Iinuma, S. S. Farshi, B. Ortel and T. Hasan, A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin, Br. J. Cancer, 1994, 70, 21–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R. C. Sun, M. Fadia, J. E. Dahlstrom, C. R. Parish, P. G. Board and A. C. Blackburn, Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo, Breast Cancer Res. Treat., 2010, 120, 253–260.

    Article  CAS  PubMed  Google Scholar 

  18. S. Dhar and S. J. Lippard, Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 22199–22204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. W. Cao, S. Yacoub, K. T. Shiverick, K. Namiki, Y. Sakai, S. Porvasnik, C. Urbanek and C. J. Rosser, Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation, Prostate, 2008, 68, 1223–1231.

    Article  CAS  PubMed  Google Scholar 

  20. J. Y. Wong, G. S. Huggins, M. Debidda, N. C. Munshi and I. De Vivo, Dichloroacetate induces apoptosis in endometrial cancer cells, Gynecol. Oncol., 2008, 109, 394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P. Kaufmann, K. Engelstad, Y. Wei, S. Jhung, M. C. Sano, D. C. Shungu, W. S. Millar, X. Hong, C. L. Gooch, X. Mao, J. M. Pascual, M. Hirano, P. W. Stacpoole, S. DiMauro and D. C. De Vivo, Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial, Neurology, 2006, 66, 324–330.

    Article  CAS  PubMed  Google Scholar 

  22. P. W. Stacpoole, D. S. Kerr, C. Barnes, S. T. Bunch, P. R. Carney, E. M. Fennell, N. M. Felitsyn, R. L. Gilmore, M. Greer, G. N. Henderson, A. D. Hutson, R. E. Neiberger, R. G. O’Brien, L. A. Perkins, R. G. Quisling, A. L. Shroads, J. J. Shuster, J. H. Silverstein, D. W. Theriaque and E. Valenstein, Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children, Pediatrics, 2006, 117, 1519–1531.

    Article  PubMed  Google Scholar 

  23. D. Newby, L. Marks and F. Lyall, Dissolved oxygen concentration in culture medium: assumptions and pitfalls, Placenta, 2005, 26, 353–357.

    Article  CAS  PubMed  Google Scholar 

  24. K. M. Anderson, J. Jajeh, P. Guinan and M. Rubenstein, In vitro effects of dichloroacetate and CO2 on hypoxic HeLa cells, Anticancer Res., 2009, 29, 4579–4588.

    CAS  PubMed  Google Scholar 

  25. S. Shahrzad, K. Lacombe, U. Adamcic, K. Minhas and B. L. Coomber, Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia, Cancer Lett., 2010.

    Google Scholar 

  26. E. D. Michelakis, G. Sutendra, P. Dromparis, L. Webster, A. Haromy, E. Niven, C. Maguire, T. L. Gammer, J. R. Mackey, D. Fulton, B. Abdulkarim, M. S. McMurtry and K. C. Petruk, Metabolic modulation of glioblastoma with dichloroacetate, Sci. Transl. Med., 2010, 2, 31ra34.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Kwitniewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwitniewski, M., Moan, J. & Juzeniene, A. Metabolic-targeted therapy with dichloroacetate (DCA): a novel treatment strategy to improve the outcome of photodynamic therapy. Photochem Photobiol Sci 10, 25–28 (2011). https://doi.org/10.1039/c0pp00193g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00193g

Navigation