Skip to main content
Log in

The effect of phenyl substitution on the fluorescence characteristics of fluorescein derivatives via intramolecular photoinduced electron transfer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

UV-vis absorption, steady state fluorescence emission, time-correlated single photon counting and laser flash photolysis methods were employed to examine the excited state properties of fluorescein derivatives to understand the mechanism that controls their fluorescence efficiency. The fluorescein derivatives contain amino, t-butyl, carboxyl or nitro on their phenyl moieties, respectively. These substituents are not directly connected to the fluorophore but still showed a very remarkable effect on the fluorescence properties. Compared to fluorescein, the introduction of nitro, a strong electron withdrawing group, or amino, a strong electron donating group, caused a substantial quenching of both the fluorescence quantum yield and lifetime. The presence of a t-butyl or carboxyl, on the other hand, caused a smaller decrease. The mechanism for the substituent effect is due to the involvement of an additional de-excitation process, i.e. intramolecular photoinduced electron transfer (PET). The thermodynamics and kinetics of PET were analyzed. Depending on the nature of the substituent, the xanthenic ring acts as an electron acceptor (or donor), while the phenyl moiety is the corresponding electron donor (or acceptor) in PET. The rate constant of PET for the amino case is larger than 4.79 × 109 s−1, while for nitro substitution it is 0.67 × 109 s−1. Both values are much larger than the radiation rate constant of 0.20 × 109 s−1, meaning that PET plays important roles in the deactivation of S1 for the two dyes. The charge transfer state generated by PET was observed by laser flash photolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Yang, M. J. Schmerr, R. Jackman, W. Bodemer and E. S. Yeung, Capillary electrophoresis-based noncompetitive immunoassay for the prion protein using fluorescein-labeled protein a as a fluorescent probe, Anal. Chem., 2005, 77, 4489–4494.

    Article  CAS  PubMed  Google Scholar 

  2. S. Salleres, F. Lo pez Arbeloa, V. Marti nez, T. Arbeloa, I. Lopez Arbeloa, Photophysics of Rhodamine 6G Laser Dye in Ordered Surfactant (C12TMA)/Clay (Laponite) Hybrid Films, J. Phys. Chem. C, 2009, 113, 965–970.

    Article  CAS  Google Scholar 

  3. K. Ergaieg and R. Seux, A comparative study of the photoinactivation of bacteria by meso-substituted cationic porphyrin, rose Bengal and methylene blue, Desalination, 2009, 248, 32–41.

    Google Scholar 

  4. R. W. Dapson and R. W. Horobin, Dyes from a twenty-first century perspective, Biotech. Histochem., 2009, 84, 135–137.

    Article  CAS  PubMed  Google Scholar 

  5. L. H. C. Chua, A. P. Robertson, W. K. Yee, E. B. Shuy, E. Y. M. Lo, T. T. Lim and S. K. Tan, Use of Fluorescein as a Ground Water Tracer in Brackish Water Aquifers, Ground Water, 2007, 45, 85–88.

    Article  CAS  PubMed  Google Scholar 

  6. I. Rosenthal, P. Peretz and K. A. Muszkat, Thermochromic and hyperchromic effects in Rhodamine B solutions, J. Phys. Chem., 1979, 83, 350–353.

    Article  CAS  Google Scholar 

  7. D. F. Eaton, Reference materials for fluorescence measurement, Pure Appl. Chem., 1988, 60, 1107–1114.

    Article  CAS  Google Scholar 

  8. Y. Duan, M. Liu, W. Sun, M. Wang, S. Liu and Q. X. Li, Recent, Progress on Synthesis of Fluorescein Probes, Mini-Rev. Org. Chem., 2009, 6, 35–43.

    Article  CAS  Google Scholar 

  9. N. Boens, W. Qin, N. Basari, A. Orte, E. M. Talavera, J. M. Alvarez-Pez, Photophysics of the Fluorescent pH Indicator BCECF, J. Phys. Chem. A, 2006, 110, 9334–9343.

    Article  CAS  PubMed  Google Scholar 

  10. P. G. Bowers and G. Porter, Triplet state quantum yields for some aromatic hydrocarbons and xanthene dyes in dilute solution, Proc. R. Soc., 1967, A299, 348–352.

    Google Scholar 

  11. J. H. Brannon and D. Magde, Absolute Quantum Yield Determination by Thermal Blooming. Fluorescein, J. Phys. Chem., 1978, 82, 705.

    Article  CAS  Google Scholar 

  12. X. Zhang, Q. Liu, A. Son, Q. Zhang, F. Zhang and F. Zhao, Photophysical properties of dibenzofluorescein and the presence of its tautomers or prototropic forms in organic solvents, Photochem. Photobiol. Sci., 2008, 7, 299–302.

    Article  CAS  PubMed  Google Scholar 

  13. N. I. Rtishchev, D. V. Samoilov, V. P. Martynova, A. V. El’tsov, Luminescence Properties of Nitro Derivatives of Fluorescein, Russ. J. Gen. Chem., 2001, 71, 1467–1478.

    Article  CAS  Google Scholar 

  14. R. Duchowicz, M. L. Ferrer and A. U. Acun, Kinetic Spectroscopy of Erythrosin Phosphorescence and Delayed Fluorescence in Aqueous Solution at Room Temperature, Photochem. Photobiol., 1998, 68, 494–501.

    Article  CAS  PubMed  Google Scholar 

  15. A. I. Ponyaev, V. P. Martynova, A. V. El’tsov, Photophysical and Photocatalytic Parameters of Sulfo and Tetrabromosulfo Derivatives of Fluorescein, Russ. J. Gen. Chem., 2001, 71, 1744–1750.

    Article  CAS  Google Scholar 

  16. L. Crovetto, J. M. Paredes, R. Rios, E. M. Talavera, J. M. Alvarez-Pez, Photophysics of a xanthenic derivative dye useful as an “on/off” fluorescence probe, J. Phys. Chem. A, 2007, 111, 13311–13320.

    Article  CAS  PubMed  Google Scholar 

  17. G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison and G. W. Robinson, Picosecond Fluorescence Studies of Xanthene Dyes, J. Am. Chem. Soc., 1977, 99, 4306–4311.

    Article  CAS  Google Scholar 

  18. L. S. Forster and D. Dudley, The Luminescence of Fluorescein Dyes, J. Phys. Chem., 1962, 66, 838–840.

    Article  CAS  Google Scholar 

  19. E. Gandin, Y. Lion, A. v. d. Horst, Quantum Yield of Singlet Oxygen Production by Xanthene Derivatives, Photochem. Photobiol., 1983, 37, 271–278.

    Article  CAS  Google Scholar 

  20. H. Gratz and A. Penzkofer, Triplet–triplet absorption of some organic molecules determined by picosecond laser excitation and time-delayed picosecond light continuum probing, J. Photochem. Photobiol., A, 1999, 127, 21–30.

    Article  CAS  Google Scholar 

  21. E. Klimtchuk, M. A. J. Rodgers and D. C. Neckers, Laser, Flash Photolysis Studies of Novel Xanthene Dye Derivatives, J. Phys. Chem., 1992, 96, 9817–9820.

    Article  CAS  Google Scholar 

  22. L. Lindqvist, The, Triplet State of Fluoresceix in Sulfcric Acid, J. Phys. Chem., 1963, 67, 1701.

    Article  CAS  Google Scholar 

  23. J. M. Larkin, W. R. Donaldson, T. H. Foster and R. S. Knox, Reverse intersystem crossing from a triplet state of rose bengal populated by sequential 532-+ 1064-nm laser excitation, Chem. Phys., 1999, 244, 319–330.

    Article  CAS  Google Scholar 

  24. D. Magde, R. Wong and P. G. Seybold, Fluorescence, Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields, Photochem. Photobiol., 2002, 75, 327–334.

    Article  CAS  PubMed  Google Scholar 

  25. J. Paczkowski, J. J. M. Lamberts, B. Paczkowska and D. C. Neckers, Photophysical properties of rose bengal and its derivatives (XII), J. Free Radicals Biol. Med., 1985, 1, 341–351.

    Article  CAS  Google Scholar 

  26. A. Penzkofer, A. Beidoun and M. Daiber, Intersystem-crossing and excited-state absorption in eosin Y solutions determined by picosecond double pulse transient absorption measurements, J. Lumin., 1992, 51, 297–314.

    Article  CAS  Google Scholar 

  27. S. Reindl and A. Penzkofer, Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation, Chem. Phys., 1996, 213, 429–438.

    Article  CAS  Google Scholar 

  28. S. Reindl and A. Penzkofer, Higher excited-state triplet–singlet intersystem crossing of some organic dyes, Chem. Phys., 1996, 211, 431–439.

    Article  CAS  Google Scholar 

  29. B. Soep, A. Kellman, M. Martin and L. Lindqvist, Study of triplet quantum yields using a tunable dye laser, Chem. Phys. Lett., 1972, 13, 241–244.

    Article  CAS  Google Scholar 

  30. R. Sjoback, J. Nygren and M. Kubista, Absorption Fluorescence, Properties of Fluorescein, Spectrochim. Acta, Part A, 1995, 51, L7–L21.

    Article  Google Scholar 

  31. W. R. Orndorff, R. C. Gibbs and C. V. Shapiro, The Absorption Spectra of Fluorescein, Fluoran and Some Related Compounds, J. Am. Chem. Soc., 1928, 50, 819–828.

    Article  CAS  Google Scholar 

  32. K. K. Rohatgi and G. S. Singhal, Determination of Average Molar Absorptivity for Self-Absorption of Fluorescent Radiation in Fluorescein Solution, Anal. Chem., 1962, 34, 1702–1706.

    Article  CAS  Google Scholar 

  33. H. E. Lessing and A. v. Jena, in Laser Handbook, ed. M. L. Stitch, North-Holland, Amsterdam, 1979, pp. 753.

  34. L. Lindqvist, A flash photolysis study of fluorescein, Arkiv Kemi, 1960, 16, 79–83.

    CAS  Google Scholar 

  35. V. Kasche and L. Lindqvist, Transient, Species in the Photochemistry of Eosin, Photochem. Photobiol., 1965, 4, 923–933.

    Article  CAS  Google Scholar 

  36. V. Wintgens, J. C. Scaiano, S. M. Linden and D. C. Neckers, Transient, Phenomena in the Laser Flash Photolysis of Rose Bengal C-2′Ethyl Ester C-6 Sodium Salt, J. Org. Chem., 1989, 54, 5242–5246.

    Article  CAS  Google Scholar 

  37. R. Brennetot and J. Georges, Transient absorption of the probe beam by the erythrosine triplet in pulsed-laser thermal lens spectrometry: the influence of the solvent, oxygen and dye concentration, Chem. Phys. Lett., 1998, 289, 19–24.

    Article  CAS  Google Scholar 

  38. D. Magde, G. E. Rojas and P. G. Seybold, Solvent, Dependence of the Fluorescence Lifetimes of Xanthene Dyes, Photochem. Photobiol., 1999, 70, 737–744.

    Article  CAS  Google Scholar 

  39. D. C. Neckers and S. N. Gupta, Spectral, Properties of Rose Bengal Derivatives in Polar and Nonpolar Solvents, J. Org. Chem., 1987, 52, 936–938.

    Article  CAS  Google Scholar 

  40. N. Klonis, A. H. A. Clayton, E. W. Voss, and W. H. Sawyer, Spectral properties of fluorescein in solvent-water mixtures: applications as a probe of hydrogen bonding environments in biological systems, Photochem. Photobiol., 1998, 67, 500–510.

    CAS  PubMed  Google Scholar 

  41. H. G. Brittain and F. S. Richardson, Solvent Induced Circularly Polarized Emission from Fluorescein, J. Phys. Chem., 1976, 80, 2590–2592.

    Article  CAS  Google Scholar 

  42. S. D.-M. Islam and O. Ito, Solvent effects on rates of photochemical reactions of rose bengal triplet state studied by nanosecond laser photolysis, J. Photochem. Photobiol., A, 1999, 123, 53–59.

    Article  CAS  Google Scholar 

  43. N. Klonis and W. H. Sawyer, Effect of Solvent–Water Mixtures on the Prototropic Equilibria of Fluorescein and on the Spectral Properties of the Monoanion, Photochem. Photobiol., 2000, 72, 179–185.

    Article  CAS  PubMed  Google Scholar 

  44. K. G. Casey and E. L. Quitevis, Effect of Solvent Polarity on Nonradiative Processes in Xanthene Dyes: Rhodamine B in Normal Alcohols, J. Phys. Chem., 1988, 92, 6590–6594.

    Article  CAS  Google Scholar 

  45. M. Martin and L. Lindqvist, The pH dependence of fluorescein fluorescence, J. Lumin., 1975, 10, 381–390.

    Article  CAS  Google Scholar 

  46. R. Dunsbach and R. Schmidt, Deactivation of excited xanthene dye dimers, J. Photochem. Photobiol., A, 1995, 85, 275–279.

    Article  CAS  Google Scholar 

  47. M. Arık, N. Celebi and Y. Onganer, Fluorescence quenching of fluorescein with molecular oxygen in solution, J. Photochem. Photobiol., A, 2005, 170, 105–111.

    Article  CAS  Google Scholar 

  48. W. J. Svirbely and N. E. Sharpless, The Quenching of the Fluorescence of the Eosin Ion, J. Am. Chem. Soc., 1954, 76, 1404–1409.

    Article  CAS  Google Scholar 

  49. L. Flamigni, Inclusion of Fluorescein and Halogenated Derivatives in alpha-, beta-, and gama-Cyclodextrins. A Steady-State and Picosecond Time-Resolved Study, J. Phys. Chem., 1993, 97, 9566–9572.

    Article  CAS  Google Scholar 

  50. S. Biswas, S. C. Bhattacharya, P. K. Sen and S. P. Moulik, Absorption and emission spectroscopic studies of fluorescein dye in alkanol, micellar and microemulsion media, J. Photochem. Photobiol., A, 1999, 123, 121–128.

    Article  CAS  Google Scholar 

  51. P. Bilski, R. Dabestani and C. F. Chignell, Influence of Cationic Surfactant on the Photoprocesses of Eosine and Rose Bengal in Aqueous Solutlon, J. Phys. Chem., 1991, 95, 5784–5791.

    Article  CAS  Google Scholar 

  52. A. Song, J. Zhang, M. Zhang, T. Shen and J. a. Tang, Spectral properties and structure of fluorescein and its alkyl derivatives in micelles, Colloids Surf., A, 2000, 167, 253–262.

    Article  CAS  Google Scholar 

  53. B. B. Bhowmik and P. Ganguly, Photophysics of xanthene dyes in surfactant solution, Spectrochim. Acta, Part A, 2005, 61, 1997–2003.

    Article  CAS  Google Scholar 

  54. P. V. Kamat and M. A. Fox, Photophysics and Photochemistry of Xanthene Dyes in Polymer Solutions and Films, J. Phys. Chem., 1984, 88, 2297–2302.

    Article  CAS  Google Scholar 

  55. S. N. Gupta, S. M. Linden, A. Wrzyszczynski and D. C. Neckers, Light-Induced Spectral Changes in Rose Bengal End-Capped Polystyrene, Macromolecules, 1988, 21, 51–55.

    Article  CAS  Google Scholar 

  56. A. V. Deshpande and E. B. Namdas, Spectroscopic properties of Na-fluorescein in polyacrylic acid films, J. Photochem. Photobiol., A, 1997, 110, 177–182.

    Article  CAS  Google Scholar 

  57. M. E. Daraio, E. S. RomaÂn, Aggregation and Photophysics of Rose Bengal in Alumina-Coated Colloidal Suspensions, Helv. Chim. Acta, 2001, 84, 2601–2614.

    Article  CAS  Google Scholar 

  58. H. Zhang, Y. Zhou, M. Zhang, T. Shen, Y. Li and D. Zhu, Photoinduced interaction between fluorescein ester derivatives and CdS colloid, J. Colloid Interface Sci., 2003, 264, 290–295.

    Article  CAS  PubMed  Google Scholar 

  59. P. Siejak, D. Fraückowiak, Spectral Properties of Fluorescein Molecules in Water with the Addition of a Colloidal Suspension of Silver, J. Phys. Chem. B, 2005.

    Google Scholar 

  60. A. Imhof, M. Megens, J. J. Engelberts, D. T. N. d. Lang, R. Sprik and W. L. Vos, Spectroscopy of Fluorescein (FITC) Dyed Colloidal Silica Spheres, J. Phys. Chem. B, 1999, 103, 1408–1415.

    Article  CAS  Google Scholar 

  61. S. K. Lam, E. Namdas and D. Lo, Effects of oxygen and temperature on phosphorescence and delayed fuorescence of erythrosin B trapped in sol–gel silica, J. Photochem. Photobiol., A, 1998, 118, 25–30.

    Article  Google Scholar 

  62. T. Fujii, A. Ishii, Y. Kurihara and M. Anpo, Multiple fluorescence spectra of fluorescein molecules encapsulated in the silica xerogel prepared by the sol–gel reaction, Res. Chem. Intermed., 1993, 19, 333–342.

    Article  CAS  Google Scholar 

  63. T. Fujii, A. Ishii, N. Takusagawa and M. Anpo, Fluorescence spectra and chemical species of fluorescein molecules adsorbed on a calcinated porous Vycor glass, Res. Chem. Intermed., 1992, 17, 1–14.

    Article  CAS  Google Scholar 

  64. A. K. Dutta and C. Salesse, A Spectroscopic and Epifluorescence Microscopic Study of (Hexadecanoylamino)fluorescein Aggregates at the Air–Water Interface and in Langmuir–Blodgett Films, Langmuir, 1997, 13, 5401–5408.

    Article  CAS  Google Scholar 

  65. A. Kathiravan, V. Anbazhagan, M. A. Jhonsi and R. Renganathan, Fluorescence Quenching of Xanthene Dyes by TiO2, Zeit. Physik. Chem., 2007, 221, 941–948.

    Article  CAS  Google Scholar 

  66. M. A. Ryan, E. C. Fitzgerald and M. T. Spitler, Internal Reflection Flash Photolysis Study of the Photochemistry of Eosin at TiO2 Semiconductor Electrodes, J. Phys. Chem., 1989, 93, 6150–6156.

    Article  CAS  Google Scholar 

  67. N. A. Domnina and A. M. Saletskii, Polarized Luminescence of Erythrosine Molecules Adsorbed on a Semiconductor–Dielectric Structure, Opt. Spectrosc., 2003, 95, 42–45.

    Article  CAS  Google Scholar 

  68. R. Antoine, A. A. Tamburello-Luca, P. Hebert, P. F. Brevet and H. H. Girault, Picosecond dynamics of EosinB at the air/water interface by time-resolved second harmonic generation: orientational randomization and rotational relaxation, Chem. Phys. Lett., 1998, 288, 138–146.

    Article  CAS  Google Scholar 

  69. J. R. Unruh, G. Gokulrangan, G. S. Wilson and C. K. Johnson, Fluorescence Properties of Fluorescein, Tetramethylrhodamine and Texas Red Linked to a DNA Aptamer, Photochem. Photobiol., 2005, 81, 682–690.

    Article  CAS  PubMed  Google Scholar 

  70. J. R. Falck, M. Krieger, J. L. Goldstein and M. S. Brown, Preparation and Spectral Properties of Lipophilic Fluorescein Derivatives: Application to Plasma Low-Density Lipoprotein, J. Am. Chem. Soc., 1981, 103, 7396–7398.

    Article  CAS  Google Scholar 

  71. L. C. Abbott, P. MacFaul, L. Jansen, J. Oakes, J. R. Lindsay Smith and J. N. Moore, Spectroscopic and photochemical studies of xanthene and azo dyes on surfaces: cellophane as a mimic of paper and cotton, Dyes Pigm., 2001, 48, 49–56.

    Article  CAS  Google Scholar 

  72. A. Orte, L. Crovetto, E. M. Talavera, N. Boens, J. M. Alvarez-Pez, Absorption and emission study of 2′,7′-difluorofluorescein and its excited-state buffer-mediated proton exchange reactions, J. Phys. Chem. A, 2005, 109, 734–737.

    Article  CAS  PubMed  Google Scholar 

  73. L. Crovetto, A. Orte, E. M. Talavera, J. M. Alvarez-Pez, Global Compartmental Analysis of the Excited-State Reaction between Fluorescein and ((+−)-N-Acetyl Aspartic Acid, J. Phys. Chem. B, 2004, 108, 6082–6092.

    Article  CAS  Google Scholar 

  74. A. I. Ponyaev, V. P. Martynova, A. V. El’tsov, Photophysical and Photocatalytic Parameters of Sulfo and Tetrabromosulfo Derivatives of Fluorescein, Russ. J. Gen. Chem., 2001, 71, 1744–1750.

    Article  CAS  Google Scholar 

  75. X. F. Zhang, Q. Liu, H. Wang, Z. Fu and F. Zhang, Photophysical behavior of lipophilic xanthene dyes without the involvement of photoinduced electron transfer mechanism, J. Photochem. Photobiol., A, 2008, 200, 307–313.

    Article  CAS  Google Scholar 

  76. X.-F. Zhang, I. Zhang and L. Liu, Photophysics of Halogenated Fluoresceins: Involvement of Both Intramolecular Electron Transfer and Heavy Atom Effect in the Deactivation of Excited States, Photochem. Photobiol., 2010, 86, 492–498.

    Article  CAS  PubMed  Google Scholar 

  77. H. Diehl, N. Horchak-Morris, Studies on fluorescein-V The absorbance of fluorescein in the ultraviolet, as a function of pH, Talanta, 1987, 34, 739–741.

    Article  CAS  PubMed  Google Scholar 

  78. H. Diehl, Studies on fluorescein-VI Absorbance of the various prototropic forms of yellow fluorescein in aqueous solution, Talanta, 1989, 36, 413–415.

    Article  CAS  PubMed  Google Scholar 

  79. B. Valeur, in Molecular Fluorescence: Principles and Applications, ed. B. Valeur, Wiley-VCH Verlag GmbH, Weinheim, 2001, pp. 56–59.

  80. P. Wardman and E. D. Clarke, Oxygen inhibition of nitroreductase: electron transfer from nitro radical-anions to oxygen, Biochem. Biophys. Res. Commun., 1976, 69, 942–949.

    Article  CAS  PubMed  Google Scholar 

  81. H.-Y. Pan, F.-Y. Ge, L.-G. Chen, Synthesis, Separation and Characterization of Aminofluorescein, Chin. J. App. Chem., 2006, 23, 193–197.

    CAS  Google Scholar 

  82. R. Markuszewski and H. Diehl, Structure of red and orange fluorescein, Talanta, 1980, 27, 937–943.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Fu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XF. The effect of phenyl substitution on the fluorescence characteristics of fluorescein derivatives via intramolecular photoinduced electron transfer. Photochem Photobiol Sci 9, 1261–1268 (2010). https://doi.org/10.1039/c0pp00184h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00184h

Navigation