Skip to main content
Log in

Vectorial photoinduced electron transfer in multicomponent film systems of poly(3-hexylthiophene), porphyrin—fullerene dyad, and perylenetetracarboxidiimide

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Multistage electron transfer in a film system consisting of a hole-transporting layer (HTL), donor—acceptor pair (D—A), and an electron-transporting layer (ETL) was studied by photovoltage and flash-photolysis techniques. Poly(3-hexylthiophene) (PHT) was used as the HTL, while a symmetric porphyrin—fullerene dyad (P-F) and perylenetetracarboxidiimide (PTCDI) layers were functioning as the D—A pair and ETL, respectively. The photoexcitation of this three-component film system causes charge separations in the monomolecular P-F film, followed by electron transfer from the PHT polymer film and the fullerene anions to the porphyrin cations and the PTCDI layer, respectively. The final transient state is a charged PHT+|P-F|PTCDI system, with significantly increased amplitude and lifetime of the photoelectrical signals compared to previously studied P-F|PTCDI and PHT|P-F systems, due to the its increased charge-separation distance. The study promotes the knowledge on the charge transfer mechanism in multilayered film systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. S. Hattori, K. Ohkubo, Y. Urano, H. Sunhara, T. Nagano, Y. Wada, N. V. Tkachenko, H. Lemmetyinen and S. Fukuzumi, Charge separation in a nonfluorescent donor–acceptor dyad derived from boron dipyrromethene dye, leading to photocurrent generation, J. Phys. Chem. B, 2005, 109, 15368–15375.

    Article  CAS  Google Scholar 

  2. V. Vehmanen, N. V. Tkachenko, A. Y. Tauber, P. H. Hynninen and H. Lemmetyinen, Ultrafast charge transfer in phytochlorin-[60]fullerene dyads: influence of the attachment position, Chem. Phys. Lett., 2001, 345, 213–218.

    Article  CAS  Google Scholar 

  3. H. Imahori and Y. Sakata, Donor-linked fullerenes: photoinduced electron transfer and its potential application, Adv. Mater., 1997, 9, 537–546.

    Article  CAS  Google Scholar 

  4. F. D’Souza and O. Ito, Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines, Coord. Chem. Rev., 2005, 249, 1410–1422.

    Article  Google Scholar 

  5. D. M. Guldi, I. Zilbermann, A. Gouloumis, P. Vázquez and T. Torres, Metallophthalocyanines: versatile electron-donating building blocks for fullerene dyads, J. Phys. Chem. B, 2004, 108, 18485–18494.

    Article  CAS  Google Scholar 

  6. H. Imahori, D. M. Guldi, K. Tamaki, Y. Yoshida, C. Luo, Y. Sakata and S. Fukuzumi, Charge separation in a novel artificial photosynthetic reaction center lives 380 ms, J. Am. Chem. Soc., 2001, 123, 6617–6628.

    Article  CAS  Google Scholar 

  7. H. Imahori, N. V. Tkachenko, V. Vehmanen, K. Tamaki, H. Lemmetyinen, Y. Sakata and S. Fukuzumi, An extremely small reorganization energy of electron transfer in porphyrin–fullerene dyad, J. Phys. Chem. A, 2001, 105, 1750–1756.

    Article  CAS  Google Scholar 

  8. N. Mataga, H. Chrosrowjan and S. Taniguchi, Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: our early studies and recent developments, J. Photochem. Photobiol., C, 2005, 6, 37–79.

    Article  CAS  Google Scholar 

  9. D. Kuciauskas, S. Lin, G. R. Seely, A. L. Moore, D. Gust, T. Drovetskaya, C. A. Reed, P. D. W. Boyd, Energy and phtoinduced electron transfer in porphyrin–fullerene dyads, J. Phys. Chem., 1996, 100, 15926–15932.

    Article  CAS  Google Scholar 

  10. H. Imahori, K. Hagiwara, M. Aoki, T. Akiyama, S. Taniguchi, T. Okada, M. Shirakawa and Y. Sakata, Linkage and solvent dependence of photoinduced electron transfer in zincporphyrin-C60 dyads, J. Am. Chem. Soc., 1996, 118, 11771–11782.

    Article  CAS  Google Scholar 

  11. D. Gust, T. A. Moore and A. L. Moore, Mimicking photosynthesic solar energy transduction, Acc. Chem. Res., 2001, 34, 40–48.

    Article  CAS  Google Scholar 

  12. H. Imahori and S. Fukuzumi, Porphyrin- and fullerene-based molecular photovoltaic devices, Adv. Funct. Mater., 2004, 14, 525–536.

    Article  CAS  Google Scholar 

  13. T. J. Kesti, N. V. Tkachenko, V. Vehmanen, H. Yamada, H. Imahori, S. Fukuzumi and H. Lemmetyinen, Exciplex intermediates in photoinduced electron transfer of porphyrin–fullerene dyads, J. Am. Chem. Soc., 2002, 124, 8067–8077.

    Article  CAS  Google Scholar 

  14. F. D’Souza, R. Chitta, S. Gadde, A. L. McCarty, P. A. Karr, M. E. Zandler, A. S. D. Sandanayaka, Y. Araki and O. Ito, Design, syntheses, and studies of supramolecular porphyrin–fullerene conjugates, using bis-18-crown-6 appended porphyrins and pyridine or alkyl ammonium functionalized fullerenes, J. Phys. Chem. B, 2006, 110, 5905–5913.

    Article  Google Scholar 

  15. T. Hasobe, P. V. Kamat, M. A. Absalom, Y. Kashiwagi, J. Sly, M. J. Crossley, K. Hosomizu, H. Imahori and S. Fukuzumi, Supramolecular photovoltaic cells based on composite molecular nanoclusters: dendritic porphyrin and C60, porphyrin dymer and C60, and porphyrin-C60 dyad, J. Phys. Chem. B, 2004, 108, 12865–12872.

    Article  CAS  Google Scholar 

  16. S. Fukuzumi, H. Imahori, H. Yamada, M. E. El-Khouly, M. Fujitsuka, O. Ito and D. M. Guldi, Catalytic effects of dioxygen on intramolecular electron transfer in radical ion pairs of zinc porphyrin-linked fullerenes, J. Am. Chem. Soc., 2001, 123, 2571–2575.

    Article  CAS  Google Scholar 

  17. T. Vuorinen, K. Kaunisto, N. V. Tkachenko, A. Efimov and H. Lemmetyinen, Photoinduced interlayer electron transfer in alternating porphyrin–fullerene dyad and regioregular poly(3-hexylthiophene) Langmuir–Blodgett films, J. Photochem. Photobiol., A, 2006, 178, 185–191.

    Article  CAS  Google Scholar 

  18. K. Kaunisto, T. Vuorinen, H. Vahasalo, V. Chukharev, N. V. Tkachenko, A. Tolkki, H. Lehtivuori and H. Lemmetyinen, Photoinduced electron transfer and photocurrent in multicomponent organic molecular films containing oriented porphyrin–fullerene dyads, J. Phys. Chem. C, 2008, 112, 10256–10265.

    Article  CAS  Google Scholar 

  19. K. Kaunisto, V. Chukharev, N. V. Tkachenko and H. Lemmetyinen, Long-lived charge separated state in molecular films containing porphyrin–fullerene dyads, Chem. Phys. Lett., 2008, 460, 241–244.

    Article  CAS  Google Scholar 

  20. K. Kaunisto, H. Vahasalo, V. Chukharev, N. V. Tkachenko, P. Vivo, M. Niemi, A. Tolkki, A. Efimov and H. Lemmetyinen, Photoinduced charge transfer through films containing poly(hexylthiophene), phthalocyanine, and porphyrin–fullerene layers, Thin Solid Films, 2009, 517, 2988–2993.

    Article  CAS  Google Scholar 

  21. P. Vivo, T. Vuorinen, V. Chukharev, A. Tolkki, K. Kaunisto, P. Ihalainen, J. Peltonen and H. Lemmetyinen, Multicomponent molecularly controlled Langmuir–Blodgett systems for organic photovoltaic applications, J. Phys. Chem. C, 2010, 114, 8559–8567.

    Article  CAS  Google Scholar 

  22. P. Vivo, A. S. Alekseev, K. Kaunisto, O. Pekkola, A. Tolkki, V. Chukharev, A. Efimov, P. Ihalainen, J. Peltonen and H. Lemmetyinen, Photoinduced electron transfer in thin films of porphyrin–fullerene dyad and perylenetetracarboxidiimide, Phys. Chem. Chem. Phys., 2010, 10.1039/c004539j

    Google Scholar 

  23. A. Efimov, P. Vainiotalo, N. V. Tkachenko and H. Lemmetyinen, Efficient synthesis of highly soluble doubly-bridged porphyrin–fullerene dyad, J. Porphyrins Phthalocyanines, 2003, 7, 610.

    Article  CAS  Google Scholar 

  24. G. Roberts, in Langmuir–Blodgett Films, Plenum Press, New York, 1990,p. 425.

    Book  Google Scholar 

  25. T. Vuorinen, K. Kaunisto, N. V. Tkachenko, A. Efimov, A. S. Alekseev, K. Hosomizu, H. Imahori and H. Lemmetyinen, Photoinduced electron transfer in Langmuir–Blodgett monolayers of porphyrin–fullerene dyads, Langmuir, 2005, 21, 5383–5390.

    Article  CAS  Google Scholar 

  26. N. V. Tkachenko, A. Y. Tauber, P. H. Hynninen, A. Y. Sharonov and H. Lemmetyinen, Light-induced electron transfer in pyropheophytin-anthraquinone dyads: vectorial charge transfer in Langmuir–Blodgett films, J. Phys. Chem. A, 1999, 103, 3657–3665.

    Article  CAS  Google Scholar 

  27. N. V. Tkachenko, P. H. Hynninen and H. Lemmetyinen, Photoelectrical signals of chlorophyll a Langmuir–Blodgett films, Chem. Phys. Lett., 1996, 261, 234–240.

    Article  CAS  Google Scholar 

  28. N. V. Tkachenko, V. Vehmanen, A. Efimov, A. S. Alekseev and H. Lemmetyinen, Vectorial photoinduced electron transfer of phytochlorin-fullerene systems in Langmuir–Blodgett films, J. Porphyrins Phthalocyanines, 2003, 7, 255.

    Article  CAS  Google Scholar 

  29. N. V. Tkachenko, Optical spectroscopy. Methods and instrumentation, Elsevier, 2006.

    Google Scholar 

  30. R. Mauer, M. Kastler and F. Laquai, The impact of polymer regioregularity on charge transport and efficiency of P3HT:PCBM photovoltaic devices, Adv. Funct. Mater., 2010, 20, 2085–2092.

    Article  CAS  Google Scholar 

  31. J. Clark, C. Silva, R. H. Friend and F. C. Spano, Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene, Phys. Rev. Lett., 2007, 98, 206406.

    Article  Google Scholar 

  32. J.-J. Yun, H.-S. Jung, S.-H. Kim, E.-M. Han, V. Vaithianathan and S. A. Jenekhe, Chlorophyll-layer-inserted poly(3-hexylthiophene) solar cell having a high light-to-current conversion efficiency up to 1.48%, Appl. Phys. Lett., 2005, 87, 123102.

    Article  Google Scholar 

  33. V. Chiş, G. Mile, R. Ştiufiuc, N. Leopold and M. Oltean, Vibrational and electronic structure of PTCDI and melamine-PTCDI complexes, J. Mol. Struct., 2009, 924–926, 47–53.

    Article  Google Scholar 

  34. E. M. J. Johansoon, A. Yartsev, H. Rensmo, V. Sundström, Photocurrent spectra and fast kinetic studies of P3HT/PCBM mixed with a dye for photoconversion in the near-IR region, J. Phys. Chem. C, 2009, 113, 3014–3020.

    Article  Google Scholar 

  35. H. Lehtivuori, A. Efimov, H. Lemmetyinen and N. V. Tkachenko, Distributed decay kinetics of charge separated state in solid film, Chem. Phys. Lett., 2007, 437, 238–242.

    Article  CAS  Google Scholar 

  36. H. Imahori, M. E. El-Khouly, M. Fujitsuka, O. Ito, Y. Sakata and S. Fukuzumi, Solvent dependence of charge separation and charge recombination rates in porphyrin–fullerene dyad, J. Phys. Chem. A, 2001, 105, 325–332.

    Article  CAS  Google Scholar 

  37. D. Gosztola, M. P. Niemczyk, W. Svec, A. S. Lukas and M. R. Wasielewski, Excited double states of electrochemically generated aromatic imide and diimide radical anions, J. Phys. Chem. A, 2000, 104, 6545–6551.

    Article  CAS  Google Scholar 

  38. N. M. Dimitrijevíc and P. V. Kamat, Triplet excited state behavior of fullerenes: pulse radiolysis and laser flash photolysis of fullerenes (C60 and C70) in benzene, J. Phys. Chem., 1992, 96, 4811–4814.

    Article  Google Scholar 

  39. K. Kaunisto, V. Chukharev, N. V. Tkachenko, A. Efimov and H. Lemmetyinen, Energy and electron transfer in multilayer films containing porphyrin–fullerene dyad, J. Phys. Chem. C, 2009, 113, 3819–3825.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Vivo.

Additional information

Electronic supplementary information (ESI) available: Additional photovoltage responses, absorption spectra, and time-resolved absorption spectra of the studied film structures. Photovoltaic characteristics of PHT|PF|PTCDI and PHT|PTCDI samples.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivo, P., Kaunisto, K., Alekseev, A.S. et al. Vectorial photoinduced electron transfer in multicomponent film systems of poly(3-hexylthiophene), porphyrin—fullerene dyad, and perylenetetracarboxidiimide. Photochem Photobiol Sci 9, 1212–1217 (2010). https://doi.org/10.1039/c0pp00180e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00180e

Navigation