Skip to main content
Log in

Photocatalytic activity of nano and microcrystalline TiO2 hybrid systems involving phthalocyanine or porphyrin sensitizers

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hybrid photocatalysts based on TiO2-anatase matrix, representing the both micro- and nano-structures, impregnated with selected lanthanide diphthalocyanine and metalloporphyrin sensitizers, were compared to evaluate their activity and effectiveness in a water suspension catalytic system designed to degrade 4-nitrophenol (4-NP) in a UV-stimulated reaction. Either type of the anatase catalyst was proved to be effective in mineralizing of 4-NP. However, kinetic studies confirmed that the composite’s efficiency basically depends on the nature of the macromolecular sensitizer and to a minor extent on the dimensions (micro/nano) of the TiO2 particles. The apparent higher activity observed for the micro-TiO2 catalysts indicates improvement of the electron transfer between the sensitizer and the micro-crystalline structure of TiO2-anatase in contrast to the nano-crystalline matrix. The mechanistic aspects of the observed catalytic performances have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. G. Marcì, E. García-López, G. Mele, L. Palmisano, G. Dyrda and R. Słota, Comparison of the photocatalytic degradation of 2-propanol in gas-solid and liquid-solid systems by using TiO2–LnPc2 hybrid powders, Catal. Today, 2009, 143, 203–210.

    Article  Google Scholar 

  2. G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano, J. Li, R. Słota and G. Dyrda, TiO2 -based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions:Role of metal andmacrocycle, Res. Chem. Intermed., 2007, 33, 433–448.

    Article  CAS  Google Scholar 

  3. G. Mele, E. García-López, L. Palmisano, G. Dyrda and R. Słota, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-decker phthalocyanine complexes, J. Phys. Chem. C, 2007, 111, 6581–6588.

    Article  CAS  Google Scholar 

  4. C. Wang, G. Yang, J. Li, G. Mele, R. Słota, M. A. Broda, M. Duan, G. Vasapollo, X. Zhang and F. X. Zhang, Novel meso-substituted porphyrins: synthesis, characterization and photocatalytic activity of their TiO2 — based composites, Dyes Pigm., 2009, 80, 321–328.

    Article  CAS  Google Scholar 

  5. R. Słota, G. Dyrda, Z. Hnatejko, J. Karolczak and Z. Stryła, Effect of air absorbed oxygen andmoisture on the chemical stability of photoexcited phthalocyanines in dimethylformamide, J. Porphyrins Phthalocyanines, 2006, 10, 43–54.

    Article  Google Scholar 

  6. M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, Photocatalytic Hydrogenation of CH3CCH with H2O on Small-Particle TiO2,: Size Quantization Effects andReaction Intermediates, J. Phys.Chem., 1987, 91, 4305–4310.

    Article  CAS  Google Scholar 

  7. X. Chen and S. S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and A pplications, Chem. Rev., 2007, 107, 2891–2959.

    Article  CAS  Google Scholar 

  8. N. Balázs, D. F. Srankó, A. Dombi, P. Sipos and K. Mogyorósi, The effect of particle shape on the activity of nanocrystalline TiO2 photocatalysts in phenol decomposition. Part 2: The key synthesis parameters influencing the particle shape and activity, Appl. Catal., B, 2010, 96, 569–576.

    Article  Google Scholar 

  9. M. Andersson, H. Birkedal, N. R. Franklin, T. Ostomel, S. Boettcher, A. E. C. Palmqvist and G. D. Stucky, Ag/AgCl-Loaded Ordered Mesoporous Anatase for Photocatalysis, Chem.Mater., 2005, 17, 1409–1415

    Article  CAS  Google Scholar 

  10. M. E. Davis, Ordered porous materials for emerging applications, Nature, 2002, 417, 813–821

    Article  CAS  Google Scholar 

  11. H. Shibata, T. Ogura, T. Mukai, T. Ohkubo, H. Sakai and M. Abe, Direct Synthesis of Mesoporous Titania Particles Having a Crystalline Wall, J. Am. Chem. Soc., 2005, 127, 16396–16397.

    Article  CAS  Google Scholar 

  12. J. Tang, Y. Wu, E. W. McFarland and G. D. Stucky, Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films, Chem. Commun., 2004, 1670–1671.

    Google Scholar 

  13. Z. Zhang, C. C. Wang, R. Zakaria and J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 1998, 102, 10871–10878.

    Article  CAS  Google Scholar 

  14. T. Peng, D. Zhao, K. Dai, W. Shi and K. Hirao, Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity, J. Phys. Chem. B, 2005, 109, 4947–4952.

    Article  CAS  Google Scholar 

  15. J. Wang, W. Sun, Z. Zhang, X. Zhang, R. Li, T. Ma, P. Zhang and Y. Li, Sonocatalytic degradation of methyl parathion in the presence of micron-sized and nano-sized rutile titanium dioxide catalysts and comparison of their sonocatalytic abilities, J. Mol. Catal. A: Chem., 2007, 272, 84–90.

    Article  CAS  Google Scholar 

  16. J. Saien and A. R. Soleymani, Comparative investigations on nano and micro titania photocatalysts in degradation and mineralization: use of turbidity in kinetic studies, J. Iran. Chem. Soc., 2009, 6, 602–611.

    Article  CAS  Google Scholar 

  17. M. H. Priya and G. Madras, Photocatalytic degradation of nitrobenzenes with combustion synthesized nano-TiO2, J. Photochem. Photobiol., A, 2006, 178, 1–7.

    Article  CAS  Google Scholar 

  18. S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim and W. I. L ee, Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films, Chem. Mater., 2003, 15, 3326–3331.

    Article  CAS  Google Scholar 

  19. R. Beranek and H. Kisch, Tuning the optical and photochemical properties of surface-modified TiO2, Photochem. Photobiol. Sci., 2008, 7, 40–48.

    Article  CAS  Google Scholar 

  20. Q. Sun and Y. Xu, Sensitization of TiO2 with aluminium phthalocyanine: factors influencing the efficiency for chlorophenol degradation in water under visible light, J. Phys. Chem. C, 2009, 113, 12387–12394.

    Article  CAS  Google Scholar 

  21. D. Robert and J. V. Weber, Titanium dioxide synthesis by sol gel methods and evaluation of their photocatalytic activity, J. Mater. Sci. Lett., 1999, 18, 97–98.

    Article  CAS  Google Scholar 

  22. C. Su, B.-Y. Hong and C.-M. Tseng, Sol–gel preparation and photocatalysis of titanium dioxide, Catal. Today, 2004, 96, 119–126.

    Article  CAS  Google Scholar 

  23. S. Qiu and S. J. Kalita, Synthesis, processing and characterization of nanocrystalline titanium dioxide, Mater. Sci. Eng., A, 2006, 435–436, 327–332.

    Google Scholar 

  24. H. W. Van der Marel and H. Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures, Elsevier, Amsterdam, Oxford, pp. 257–259.

  25. M. S. Dieckmann and K. A. Gray, A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries, Water Res., 1996, 30, 1169–1183.

    Article  CAS  Google Scholar 

  26. J. Lea and A. A. Adesina, Oxidative degradation of 4-nitrophenol in UV-illuminated titania suspension, J. Chem. Technol. Biotechnol., 2001, 76, 803–810.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Słota.

Additional information

This paper is published as part of the themed issue of contributions from the 6th European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications held in Prague, Czech Republic, June 2010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Słota, R., Dyrda, G., Szczegot, K. et al. Photocatalytic activity of nano and microcrystalline TiO2 hybrid systems involving phthalocyanine or porphyrin sensitizers. Photochem Photobiol Sci 10, 361–366 (2011). https://doi.org/10.1039/c0pp00160k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00160k

Navigation