Skip to main content
Log in

Urea-type ligand-modified CdSe quantum dots as a fluorescence “turn-on” sensor for CO32− anions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A new fluorescence “turn-on” nanosensor for carbonate determination was reported based on CdSe quantum dots (QDs) modified with thio ligands containing urea groups: N-(5-mercapto-1,3,4-thiadiazol-2-ylcarbamoyl)-2-(o-tolyloxy)acetamide (AASH-CdSe QDs). The AASH-CdSe QDs were prepared through a ligand exchange process and characterized by transmission electron microscopy (TEM), fluorescence spectroscopy, UV-vis spectroscopy and FT-IR spectroscopy. The synthesized AASH-CdSe QDs allowed a selective fluorescence “turn-on” response towards carbonate. Under optimal conditions, the relative fluorescence intensity increases linearly with carbonate concentration in the range 1 × 10−7–1 × 10−4 M with a detection limit of 2.3 × 10−8 M. A Langmuir-type binding model was highly effective in describing the carbonate concentration dependence of the luminescence intensity of the AASH-CdSe QDs. The possible mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. P. A. Gale, S. E. Garcia-Garrido and J. Garric, Anion receptors based on organic frameworks: highlights from 2005 and 2006, Chem. Soc. Rev., 2008, 37, 151–190.

    Article  CAS  Google Scholar 

  2. M. J. Little and P. D. Wentzell, Evaluation of acoustic emission as a means of carbonate detection, Anal. Chim. Acta, 1995, 309, 283–292.

    Article  CAS  Google Scholar 

  3. H. K. Lee, H. Oh, K. C. Nam and S. Jeon, Urea-functionalized calix[4]arenes as carriers for carbonate-selective electrodes, Sens. Actuators, B, 2005, 106, 207–211.

    Article  CAS  Google Scholar 

  4. H. M. Yeo, B. J. Ryu, K. C Nam, Synthesis of indolo[3,2-b]carbazole-based new colorimetric receptor for anions: A unique color change for fluoride ions, Org. Lett., 2008, 10, 2931–2934.

    Article  CAS  Google Scholar 

  5. G. Hennrich, H. Sonnenscheinb, U. Resch-Genger, Fluorescent anion receptors with iminoylthiourea binding sites—selective hydrogen bond mediated recognition of CO32−, HCO3 and HPO42−, Tetrahedron Lett., 2001, 42, 2805–2808.

    Article  CAS  Google Scholar 

  6. X. L. Zhang, Y. Xiao and X. H. Qian, A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells, Angew. Chem., Int. Ed., 2008, 47, 8025–8029.

    Article  CAS  Google Scholar 

  7. T. Gunnlaugsson, A. P. Davis, J. E. O’Brien and M. Glynn, Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors, Org. Lett., 2002, 4, 2449–2452.

    Article  CAS  Google Scholar 

  8. E. R. Goldman, I. L. Medintz, J. L. Whitley, A. Hayhurst, A. R. Clapp, H. T. Uyeda, J. R. Deschamps, M. E. Lassman and H. Mattoussi, A Hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor, J. Am. Chem. Soc., 2005, 127, 6744–6751.

    Article  CAS  Google Scholar 

  9. V. Thiagarajana and P. Ramamurthy, Specific optical signalling of anions via intramolecular charge transfer pathway based on acridinedione fluorophore, J. Lumin., 2007, 126, 886–892.

    Article  Google Scholar 

  10. S. Watanabe, O. Onogawa, Y. Komatsu and K. Yoshida, Luminescent metalloreceptor with a neutral bis(acylaminoimidazoline) binding site: optical sensing of anionic and neural phosphodiesters, J. Am. Chem. Soc., 1998, 120, 229–230.

    Article  CAS  Google Scholar 

  11. Z. H. Lin, Y. G. Zhao, C. Y. Duan, B. G. Zhang and Z. P. Bai, A highly selective chromo- and fluorogenic dual responding fluoride sensor: naked-eye detection of F ion in natural water a test pape, Dalton Trans., 2006, 3678–3684.

    Google Scholar 

  12. J. Bourson, J. Pouget and B. Valeur, Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers, J. Phys. Chem., 1993, 97, 4552–4557.

    Article  CAS  Google Scholar 

  13. T Gunnlaugsson, A. P. Davis, J. E. O’Briena and M. Glynn, Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate, Org. Biomol. Chem., 2005, 3, 48–56.

    Article  CAS  Google Scholar 

  14. L. L. Zhou, H. Sun, H. P. Li, H. Wang, X. H. Zhang, S. K. Wu and S. T. Lee, A novel colorimetric and fluorescent anion chemosensor based on the flavone quasi-crown ether-metal complex, Org. Lett., 2004, 6, 1071–1074.

    Article  CAS  Google Scholar 

  15. D. Aldakov, M. A. Palacios, P. Anzenbacher, Jr., Benzothiadiazoles anddipyrrolyl quinoxalines with extended conjugated chromophores—fluorophores and anion sensors, Chem. Mater., 2005, 17, 5238–5241.

    Article  CAS  Google Scholar 

  16. Y. H. Chan, J. Chen, Q. Liu, S. E. Wark, D. H. Son and J. D. Batteas, Ultrasensitive copper(II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots, Anal. Chem., 2010, 82, 3671–3678.

    Article  CAS  Google Scholar 

  17. S. Ding, J. Chen, H. Jiang, J. He, W. Shi, W. Zhao and J. Shen, Application of quantum dot-antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue, J. Agric. Food Chem., 2006, 54, 6139–6142.

    Article  CAS  Google Scholar 

  18. H. B. Li and X. Q. Wang, Tuning the fluorescence response of surface modified CdSe quantum dots between tyrosine and cysteine by addition of p-sulfonatocalix[4]arene, Photochem. Photobiol. Sci., 2008, 7, 694–699.

    Article  CAS  Google Scholar 

  19. R. Freeman, R. Gill, I. Shweky, M. Kotler, U. Banin and I. Willner, Biosensing and probing of intracellular metabolic pathways by NADH-sensitive quantum dots, Angew. Chem., Int. Ed., 2009, 48, 309–313.

    Article  CAS  Google Scholar 

  20. H. B. Li, C. H. Han and L. Zhang, Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions, J. Mater. Chem., 2008, 18, 4543–4548.

    Article  CAS  Google Scholar 

  21. L. Fabbrizzi, A. Leone and A. Taglietti, Chemosensing ensemble for selective carbonate detection in water based on metal–ligand interactions, Angew. Chem., Int. Ed., 2001, 40, 3066–3069.

    Article  CAS  Google Scholar 

  22. R. C. Mulrooney, N. Singh, N. Kaur and J. F. Callan, An “off-on” sensor for fluoride using luminescent CdSe/ZnS quantum dots, Chem. Commun., 2009, 686–688.

    Google Scholar 

  23. S. Nishizawa, P. Bühlmann, K. P. Xiao and Y. Umezawa, Application of a bis-thiourea ionophore for an anion selective electrode with a remarkable sulfate selectivity, Anal. Chim. Acta, 1998, 358, 35–44.

    Article  CAS  Google Scholar 

  24. S. Amemiya, P. Bühlmann, Y. Umezawa, R. C. Jagessar and D. H. Burns, An ion-selective electrode for acetate based on a urea-functionalized porphyrin as a hydrogen-bonding ionophore, Anal. Chem., 1999, 71, 1049–1054.

    Article  CAS  Google Scholar 

  25. L. Qu and X. Peng, Control of photoluminescence properties of CdSe nanocrystals in growth, J. Am. Chem. Soc., 2002, 124, 2049–2055.

    Article  CAS  Google Scholar 

  26. V. V. Breus, C. D. Heyes and G. U. Nienhaus, Quenching of CdSe-ZnS core-shell quantum dot luminescence by water-soluble thiolated ligands, J. Phys. Chem. C, 2007, 111, 18589–18594.

    Article  CAS  Google Scholar 

  27. H. Benesi and H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc., 1949, 71, 2703–2707.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Cui, Z., Zou, Z. et al. Urea-type ligand-modified CdSe quantum dots as a fluorescence “turn-on” sensor for CO32− anions. Photochem Photobiol Sci 9, 1269–1273 (2010). https://doi.org/10.1039/c0pp00119h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00119h

Navigation