Skip to main content
Log in

Why is there no in-plane H-atom transfer from aryloxy radicals? A theoretical and experimental investigation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A combined experimental and theoretical study of the mechanisms and energies associated with intramolecular H-atom transfers from methyl groups with varying numbers of phenyl substituents to oxygen atoms of aryloxy radicals is reported. It is shown that the transfers within the six aryloxy radicals investigated would have high activation energies and, in all but one case, are endothermic. A detailed analysis of the calculated reaction coordinates indicates proton-coupled electron transfers as the favored mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. G. A. Jeffery, W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin, 1991.

    Book  Google Scholar 

  2. F. Hibbert, J. Emsley, Adv. Phys. Org. Chem., 1991, 26, 255.

    Google Scholar 

  3. J. T. Hyes, H. H. Limbach, J. Klinman and R. L. Schowen (Eds), Hydrogen Transfer Reactions, Wiley-VCH, Weinheim, 2007.

    Google Scholar 

  4. Z. R. Wu, S. Ebrahimian, M. E. Zawrotny, L. D. Thornburg, G. C. Perez-Alvarado, P. Brothers, R. M. Pollack and M. F. Summers, Solution structure of 3-oxo-Delta(5)-steroid isomerase, Science, 1997, 276, 415.

    Article  CAS  PubMed  Google Scholar 

  5. J. K. Kochi, Ed.; Free Radicals, Wiley, New York, 1973.

    Google Scholar 

  6. M. J. Perkins, Free Radical Chemistry, E. Horwood, New York, 1994.

    Google Scholar 

  7. G. A. Olah, A. Molna’r, Hydrocarbon Chemistry, Wiley, New York, 1995.

    Google Scholar 

  8. R. A. Binstead, B. A. Moyer, G. J. Samuels and T. J. Meyer, Proton-Coupled Electron-Transfer Between [Ru(Bpy)2(Py)OH2]2+ And [Ru(Bpy)2(Py)O]2+ - A Solvent Isotope Effect (KH2O-KD2O) Of 16.1, J. Am. Chem. Soc., 1981, 103, 2897–2899.

    Article  CAS  Google Scholar 

  9. E. L. Lebeau, R. A. Binstead and T. J. Meyer, Mechanistic implications of proton transfer coupled to electron transfer, J. Am. Chem. Soc., 2001, 123, 10535–10544, and references therein.

    Article  CAS  PubMed  Google Scholar 

  10. J. Waluk, Proton or hydrogen transfer? Charge distribution analysis. Polish, J. Chem., 2008, 82, 947–962.

    CAS  Google Scholar 

  11. M. H. V. Huynh and T. J. Meyer, Proton-coupled electron transfer, Chem. Rev., 2007, 107, 5004–5064.

    Article  CAS  PubMed  Google Scholar 

  12. See for example: J. W. Wilt, In Free Radicals, John Wiley & Sons, New York, 1973,Vol. I, p. 378.

    Google Scholar 

  13. M. C. Foti, E. R. Johnson, M. R. Vinqvist, J. S. Wright, L. R. C. Barclay and K. U. Ingold, Naphthalene Diols: A New Class of Antioxidants Intramolecular Hydrogen Bonding in Catechols, Naphthalene Diols, and Their Aryloxyl Radicals, J. Org. Chem., 2002, 67, 5190–5196.

    Article  CAS  PubMed  Google Scholar 

  14. V. Bertolasi, P. Gilli and G. Gilli, Crystal Chemistry and Prototropic Tautomerism in 2-(1-Iminoalkyl)- Phenols (or Naphthols) and 2-Diazenyl-phenols (or Naphthols), Curr. Org. Chem., 2009, 13, 250–268.

    Article  CAS  Google Scholar 

  15. Y. V. Il’ichev and J. Wirz, Rearrangements of 2-nitrobenzyl compounds. 1. Potential energy surface of 2-nitrotoluene and its isomers explored with ab initio and density functional theory methods, J. Phys. Chem. A, 2000, 104, 7856–7870.

    Article  CAS  Google Scholar 

  16. Y. Chiang, A. J. Kresge, B. Hellrung, P. Schunemann and J. Wirz, Flash photolysis of 5-methyl-1,4-naphthoquinone in aqueous solution: Kinetics and mechanism of photoenolization and of enol trapping, Helv. Chim. Acta, 1997, 80, 1106–1121.

    Article  CAS  Google Scholar 

  17. P. J. Wagner, B. Zhou, T. Hasegawa and D. L. Ward, Diverse Photochemistry of Sterically Congested alpha-Arylacetophenones-Ground-State Conformational Control of Reactivity, J. Am. Chem. Soc., 1991, 113, 9640–9654.

    Article  CAS  Google Scholar 

  18. P. J. Wagner, Conformational flexibility and photochemistry, Acc. Chem. Res., 1983, 16, 461–467.

    Article  CAS  Google Scholar 

  19. P. Klan and P. J. Wagner, Intramolecular triplet energy transfer in bichromophores with long flexible tethers, J. Am. Chem. Soc., 1998, 120, 2198–2199.

    Article  CAS  Google Scholar 

  20. P. J. Wagner and P. Klan, Intramolecular triplet energy transfer in flexible molecules: Electronic, dynamic, and structural aspects, J. Am. Chem. Soc., 1999, 121, 9626–9635.

    Article  CAS  Google Scholar 

  21. A. Gamarnik, B. A. Johnson, M. A. Garcia-Garibay, Effect of Solvents on the Photoenolization of o-Methylanthrone at Low Temperatures. Evidence for H-Atom Tunneling from Nonequilibrating Triplets, J. Phys. Chem. A, 1998, 102, 5491–5498.

    Article  CAS  Google Scholar 

  22. M. A. Garcia-Garibay, A. Gamarnik, R. Bise, L. Pang and S. J. William, Primary isotope effects on excited-state hydrogen-atom transfer-reactions - activated and tunneling mechanisms in an ortho-methylanthrone, J. Am. Chem. Soc., 1995, 117, 10264–10275.

    Article  CAS  Google Scholar 

  23. B. A. Johnson, M. H. Kleinman, N. J. Turro, M. A. Garcia-Garibay, Hydrogen Atom Tunneling in Triplet o-Methylbenzocyclo- alkanones: Effects of Structure on Reaction Geometry and Excited State Configuration, J. Org. Chem., 2002, 67, 6944–6953.

    Article  CAS  PubMed  Google Scholar 

  24. J. R. Scheffer, 2000 Alfred Bader Award Lecture - In the footsteps of Pasteur: asymmetric induction in the photochemistry of crystalline ammonium carboxylate salts, Can. J. Chem., 2001, 79, 349–357.

    Article  CAS  Google Scholar 

  25. S. Chen, B. O. Patrick and J. R. Scheffer, Photochemistry of 9-methylbicyclo[3.3.1]nonyl aryl ketones - A novel 1,5-disproportionation of 1,4-hydroxy biradicals and asymmetric induction using the solid-state ionic chiral auxiliary method, Can. J. Chem., 2005, 83, 1460–1472.

    Article  CAS  Google Scholar 

  26. K. C. W. Chong, B. O. Patrick and J. R. Scheffer, The crystal structure of a simple enol formed in a single-crystal-to-single-crystal enolene rearrangement, Can. J. Chem., 2004, 82, 301–305.

    Article  CAS  Google Scholar 

  27. H. Ihmels and J. R. Scheffer, The Norrish type II reaction in the crystalline state: Toward a better understanding of the geometric requirements for gamma-hydrogen atom abstraction, Tetrahedron, 1999, 55, 885–907, and reference therein.

    Article  CAS  Google Scholar 

  28. F. Weinhold, C. Landies, Valency and Bonding, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  29. A. N. Cammidge and O. Ozturk, Selective Synthesis of meso-Naphthylporphyrins, J. Org. Chem., 2002, 67, 7457–7464.

    Article  CAS  PubMed  Google Scholar 

  30. R. J. Packer and D. C. Smith, 8-Hydroxy-1-naphthoyl compounds, J. Chem. Soc (C), 1967, 2194–2201.

    Google Scholar 

  31. G. W. Gribble, W. J. Kelly and S. E. Emery, Reactions of sodium-borohydride in acidic media.7. reduction of diaryl ketones in trifluoroacetic-acid, Synthesis, 1978, 763–765.

    Google Scholar 

  32. Y.-Z. Chen and R. G. Weiss, Photoreactions of substituted o-cresyl acylates in cyclohexane and in polyethylene films. The influences of intra- and inter-molecular ‘crowding’ effects, Photochem. Photobiol. Sci., 2009, 8, 916–925.

    Article  CAS  PubMed  Google Scholar 

  33. A. D. Becke, Density-functional thermochemistry.3. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  34. C. Lee, W. Yang and R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B: Condens. Matter, 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  35. P. C. Hariharan and J. A. Pople, Influence of polarization functions on molecular-orbital hydrogenation energies, Theor. Chim. Acta, 1973, 28, 213–222,; 6-31G(d,p) basis set was also tested for geometry optimization and energy calculations, and no significant changes were found compared to 6-31G*.

    Article  CAS  Google Scholar 

  36. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision B.04), Gaussian, Inc., Wallingford, CT, 2004.

    Google Scholar 

  37. ArgusLab 4.0.1, Mark A. Thompson, Planaria Software LLC, Seattle, http://www.ArgusLab.com.

  38. J. Pipek and P. G. Mezey, A fast intrinsic localization procedure applicable for abinitio and semiempirical linear combination of atomic orbital wave-functions, J. Chem. Phys., 1989, 90, 4916–4926.

    Article  CAS  Google Scholar 

  39. M. W. Schemidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, General Atomic and Molecular Electronic Structure System, J. Comput. Chem., 1993, 14, 1347–1363.

    Article  Google Scholar 

  40. E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1, Theoretical Chemistry Institute: University of Wisconsin, Madison, 1990.

    Google Scholar 

  41. MOLEKEL, Version 4.3.win32, 2002, by Stefan Portmann, © 2002 CSCS/ETHZ.

  42. The photo-Fries rearrangements of o-resyl acetates have been exploited previously as a means to synthesize o-hydroxyacetophenones: H. Garcia, J. Primo and M. A. Miranda, The photo-Fries rearrangement in the presence of potassium carbonate—a convenient synthesis of ortho-hydroxyacetophenones, Synthesis, 1985, 901–902.

    Google Scholar 

  43. W. Gu and R. G. Weiss, Extracting fundamental photochemical and photophysical information from photorearrangements of aryl phenylacylates and aryl benzyl ethers in media comprised of polyolefinic films, J. Photochem. Photobiol., C, 2001, 2, 117–137, and references cited therein.

    Article  CAS  Google Scholar 

  44. J. Xu and R. G. Weiss, Enantioselectivity of prochiral radical-pair recombinations. Reaction cavity differentiation in polyethylene films, Org. Lett., 2003, 5, 3077–3080.

    Article  CAS  PubMed  Google Scholar 

  45. J. Xu and R. G. Weiss, Combinations of chiral and prochiral singlet radical-pairsin reaction cavities of polyethylene films. Control and analysis of radical tumbling and translation, Photochem. Photobiol. Sci., 2005, 4, 348–358.

    Article  CAS  PubMed  Google Scholar 

  46. A. E. Dorigo and K. N. Houk, The relationship between proximity and reactivity. An ab initio study of the flexibility of the OH.bul. + CH4 hydrogen abstraction transition state and a force-field model for the transition states of intramolecular hydrogen abstractions, J. Org. Chem., 1988, 53, 1650–1664.

    Article  CAS  Google Scholar 

  47. A. E. Dorigo and K. N. Houk, Transition structures for intramolecular hydrogen-atom transfers: the energetic advantage of seven-membered over six-membered transition structures, J. Am. Chem. Soc., 1987, 109, 2195–2197.

    Article  CAS  Google Scholar 

  48. A. E. Dorigo, M. A. McCarrick, R. J. Loncharich and K. N. Houk, Transition structures for hydrogen atom transfers to oxygen. Comparisons of intermolecular and intramolecular processes, and open- and closed-shell systems, J. Am. Chem. Soc., 1990, 112, 7508–7514.

    Article  CAS  Google Scholar 

  49. The conversions of the esters have been kept below 20% in order to avoid the commonly observed secondary photoreactions that would mask the initial photoproduct distributions. Only in the case of 3 has a higher conversion been examined.

  50. G. Litwinienko and K. U. Ingold, Solvent effects on the rates and mechanisms of reaction of phenols with free radicals, Acc. Chem. Res., 2007, 40, 222–230.

    Article  CAS  PubMed  Google Scholar 

  51. J. M. Mayer, D. A. Hrovat, J. L. Thomas and W. T. Borden, Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/Methanol, and Phenoxyl/Phenol Self-Exchange Reactions, J. Am. Chem. Soc., 2002, 124, 11142–11147.

    Article  CAS  PubMed  Google Scholar 

  52. R. Nakagaki, M. Hiramatsu, T. Watanabe and Y. Tanimoto, Magnetic isotope and external magnetic-field effects upon the photo-Fries rearrangement of 1-naphthyl acetate, J. Phys. Chem., 1985, 89, 3222–3226.

    Article  CAS  Google Scholar 

  53. W. Gu, A. J. Hill, X. Wang, C. Cui and R. G. Weiss, Photorearrangements of five 1- and 2-naphthyl acylates in three unstretched and stretched polyethylene Films. Does reaction selectivity correlate with free volumes measured by positron annihilation lifetime spectroscopy?, Macromolecules, 2000, 33, 7801–7811.

    Article  CAS  Google Scholar 

  54. W. Gu and R. G. Weiss, Mediation of photochemical reactions of 1-naphthyl phenylacylates by polyolefin films. A ‘radical clock’ to measure rates of radical- pair cage recombinations in ‘viscous space’, Tetrahedron, 2000, 56, 6913–6925.

    Article  CAS  Google Scholar 

  55. L. M. Campos, M. V. Warrier, K. Peterfy, K. N. Houk, M. A. Garcia-Garibay, Secondary Alpha Isotope Effects on Deuterium Tunneling in Triplet o-Methylanthrones: Extraordinary Sensitivity to Barrier Width, J. Am. Chem. Soc., 2005, 127, 10178–10179.

    Article  CAS  PubMed  Google Scholar 

  56. R. P. Bell, The Tunnel Effect in Chemistry, 2nd ed., Chapman & Hall, London, 1980.

    Book  Google Scholar 

  57. Alternatively, although less likely, the lower activation barriers may also be attributed to a lower stability of the initial aryloxy radicals in the naphthoxy series.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Weiss.

Additional information

Electronic Supplementary Information (ESI) available: Synthetic scheme to 5, a representative HPLC chromatogram of a photolysis reaction mixture from 5, optimized geometries, energies, vibrational frequencies, thermal corrections, and localized orbitals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YZ., Tian, YH., Kertesz, M. et al. Why is there no in-plane H-atom transfer from aryloxy radicals? A theoretical and experimental investigation. Photochem Photobiol Sci 9, 1203–1211 (2010). https://doi.org/10.1039/c0pp00113a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00113a

Navigation