Skip to main content
Log in

Excited state behaviour of substituted dipyridophenazine Cr(iii) complexes in the presence of nucleic acids

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysics and photochemistry of [Cr(phen)2(dppz)]3+ and its 11,12-substituted derivatives [Cr(phen)2(X2dppz)]3+ {X = Me or F } have been studied in the presence of purine nucleotides or DNA using steady state and time-resolved absorption and luminescence spectroscopy. 5′-Adenosine monophosphate (5′-AMP ) shows only a weak interaction with the excited states of each complex. By contrast they are efficiently quenched by 5′-guanosine monophosphate (5′-GMP ), consistent with photo-induced electron transfer. Laser flash photolysis spectroscopy in the presence of 5′-GMP suggests that both forward and back electron-transfers are rapid. All complexes also display a strong affinity for DNA and evidence for both static and dynamic quenching mechanisms is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Balzani, A. Credi and M. Venturi, Photochemical Conversion of Solar Energy, ChemSusChem, 2008, 1, 26–58.

    Article  CAS  PubMed  Google Scholar 

  2. J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. M. Iha, J. L. Templeton and T. J. Meyer, Making Oxygen with Ruthenium Complexes, Acc. Chem. Res., 2009, 42, 1954–1965.

    Article  CAS  PubMed  Google Scholar 

  3. J. G. Vos and J. M. Kelly, Ruthenium polypyridyl chemistry; from basic research to applications and back again, Dalton Trans., 2006, 4869–4883.

    Google Scholar 

  4. S. P. Foxon, T. Phillips, M. R. Gill, M. Towrie, A. W. Parker, M. Webb and J. A. Thomas, A Multifunctional Light Switch: DNA Binding and Cleavage Properties of a Heterobimetallic Ruthenium–Rhenium Dipyridophenazine Complex, Angew. Chem., Int. Ed., 2007, 46, 3686–3688.

    Article  CAS  Google Scholar 

  5. A. E. Friedman, J.-C. Chambron, J.-P. Sauvage, N. J. Turro and J. K. Barton, Molecular “Light Switch” for DNA: Ru(bpy)2(dppz)2+, J. Am. Chem. Soc., 1990, 112, 4960–4962.

    Article  CAS  Google Scholar 

  6. C. Metcalfe and J. A. Thomas, Kinetically inert transition metal complexes that reversibly bind to DNA, Chem. Soc. Rev., 2003, 32, 215–224.

    Article  CAS  PubMed  Google Scholar 

  7. L. J. K. Boerner and J. M. Zaleski, Metal complex-DNA interactions: from transcription inhibition to photoactivated cleavage, Curr. Opin. Chem. Biol., 2005, 9, 135–144.

    Article  CAS  PubMed  Google Scholar 

  8. L. Herman, S. Ghosh, E. Defrancq, A. Kirsch-De Mesmaeker, Ru(II) complexes and light: molecular tools for biomolecules, J. Phys. Org. Chem., 2008, 21, 670–681.

    Article  CAS  Google Scholar 

  9. B. Armitage, Photocleavage of Nucleic Acids, Chem. Rev., 1998, 98, 1171–1200.

    Article  CAS  PubMed  Google Scholar 

  10. J. Dyer, C. M. Creely, J. C. Penedo, D. C. Grills, S. Hudson, P. Matousek, A. W. Parker, M. Towrie, J. M. Kelly and M. W. George, Solvent dependent photophysics of fac-[Re(CO)3(11,12-X2dppz)(py)]+ (X = H, F or Me), Photochem. Photobiol. Sci., 2007, 6, 741–748.

    Article  CAS  PubMed  Google Scholar 

  11. I. Ortmans, B. Elias, J. M. Kelly, C. Moucheron, A. Kirsch-De Mesmaeker, [Ru(TAP)2(dppz)]2+: a DNA intercalating complex, which luminesces strongly in water and undergoes photo-induced proton-coupled electron transfer with guanosine-5-monophosphate, Dalton Trans., 2004, 668–676.

    Google Scholar 

  12. E. J. C. Olson, D. Hu, A. Hörmann, A. M. Jonkman, M. R. Arkin, E. D. A. Stemp, J. K. Barton and P. F. Barbara, First Observation of the Key Intermediate in the “Light-Switch” Mechanism of [Ru(phen)2dppz]2+, J. Am. Chem. Soc., 1997, 119, 11458–11467.

    Article  CAS  Google Scholar 

  13. F. R. Svensson, M. Li, B. Nordén and P. Lincoln, Luminescent Dipyridophenazine-Ruthenium Probes for Liposome Membranes, J. Phys. Chem. B, 2008, 112, 10969–10975.

    Article  CAS  PubMed  Google Scholar 

  14. C. G. Coates, J. Olofsson, M. Coletti, J. J. McGarvey, B. Önfelt, P. Lincoln, B. Nordén, E. Tuite, P. Matousek and A. W. Parker, Picosecond Time-Resolved Resonance Raman Probing of the Light-Switch States of [Ru(Phen)2dppz]2+, J. Phys. Chem. B, 2001, 105, 12653–12664.

    Article  CAS  Google Scholar 

  15. M. K. Brennaman, J. H. Alstrum-Acevedo, C. N. Fleming, P. Jang, T. J. Meyer and J. M. Papanikolas, Turning the [Ru(bpy)2dppz]2+ Light-Switch On and Off with Temperature, J. Am. Chem. Soc., 2002, 124, 15094–15098.

    Article  CAS  PubMed  Google Scholar 

  16. M. K. Brennaman, T. J. Meyer and J. M. Papanikolas, [Ru(bpy)2dppz]2+ Light-Switch Mechanism in Protic Solvents as Studied through Temperature-Dependent Lifetime Measurements, J. Phys. Chem. A, 2004, 108, 9938–9944.

    Article  CAS  Google Scholar 

  17. J. Olofsson, L. M. Wilhelmsson and P. Lincoln, Effects of Methyl Substitution on Radiative and Solvent Quenching Rate Constants of [Ru(phen)2dppz]2+ in Polyol Solvents and Bound to DNA, J. Am. Chem. Soc., 2004, 126, 15458–15465.

    Article  CAS  PubMed  Google Scholar 

  18. J. Olofsson, B. Önfelt and P. Lincoln, Three-State Light Switch of [Ru(phen)2dppz]2+: Distinct Excited-State Species with Two, One, or No Hydrogen Bonds from Solvent, J. Phys. Chem. A, 2004, 108, 4391–4398.

    Article  CAS  Google Scholar 

  19. L. Bijeire, B. Elias, J.-P. Souchard, E. Gicquel, C. Moucheron, A. Kirsch-De Mesmaeker and P. Vicendo, Photoelectron Transfer Processes with Ruthenium(II) Polypyridyl Complexes and Cu/Zn Superoxide Dismutase, Biochemistry, 2006, 45, 6160–6169.

    Article  CAS  PubMed  Google Scholar 

  20. A. M. Blanco-Rodriguez, M. Busby, K. Ronayne, M. Towrie, C. Grădinaru, J. Sudhamsu, J. Sýkora, M. Hof, S. Záliš, A. J. Di Bilio, B. R. Crane, H. B. Gray, A. Vlček Jr., Relaxation Dynamics of Pseudomonas aeruginosa ReI(CO)3(α-diimine)(HisX)+ (X = 83, 107, 109, 124, 126)CuII Azurins, J. Am. Chem. Soc., 2009, 131, 11788–11800.

    Article  CAS  PubMed  Google Scholar 

  21. C. G. Barry, E. C. Turney, C. S. Day, G. Saluta, G. L. Kucera and U. Bierbach, Thermally inert metal ammines as light-inducible DNA-Targeted agents. Synthesis, photochemistry, and photobiology of a prototypical Rhodium(III)-intercalator conjugate, Inorg. Chem., 2002, 41, 7159–7169.

    Article  CAS  PubMed  Google Scholar 

  22. J. Cadet, T. Douki, D. Gasparutto, J.-L. Ravanat, Oxidative damage to DNA: formation, measurement and biochemical features, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2003, 531, 5–23.

    Article  CAS  Google Scholar 

  23. G. J. Ryan, S. Quinn and T. Gunnlaugsson, Highly Effective DNA Photocleavage by Novel “Rigid” Ru(bpy)3-4-nitro and-4-amino-1,8-naphthalimide Conjugates, Inorg. Chem., 2008, 47, 401–403.

    Article  CAS  PubMed  Google Scholar 

  24. B. Elias, C. Creely, G. W. Doorley, M. M. Feeney, C. Moucheron, A. Kirsch-De Mesmaeker, J. Dyer, D. C. Grills, M. W. George, P. Matousek, A. W. Parker, M. Towrie and J. M. Kelly, Photooxidation of Guanine by a Ruthenium Dipyridophenazine Complex Intercalated in a Double-Stranded Polynucleotide Monitored Directly by Picosecond Visible and Infrared Transient Absorption Spectroscopy, Chem.–Eur. J., 2008, 14, 369–375.

    Article  CAS  PubMed  Google Scholar 

  25. K. E. Erkkila, D. T. Odom and J. K. Barton, Recognition and reaction of metallointercalators with DNA, Chem. Rev., 1999, 99, 2777–2795.

    Article  CAS  PubMed  Google Scholar 

  26. T. Biver, C. Cavazza, F. Secco and M. Venturini, The two modes of binding of Ru(phen)2dppz2+ to DNA: Thermodynamic evidence and kinetic studies, J. Inorg. Biochem., 2007, 101, 461–469.

    Article  CAS  PubMed  Google Scholar 

  27. B. M. Zeglis, V. C. Pierre and J. K. Barton, Metallo-intercalators and metallo-insertors, Chem. Commun., 2007, 4565–4579.

    Google Scholar 

  28. K. D. Barker, K. A. Barnett, S. M. Connell, J. W. Glaeser, A. J. Wallace, J. Wildsmith, B. J. Herbert, J. F. Wheeler, N. A. P. Kane-Maguire, Synthesis and characterization of heteroleptic Cr(diimine)33+ complexes, Inorg. Chim. Acta, 2001, 316, 41–49.

    Article  CAS  Google Scholar 

  29. R. T. Watson, N. Desai, J. Wildsmith, J. F. Wheeler, N. A. P. Kane-Maguire, Interaction of Cr(diimine)33+ Complexes with DNA, Inorg. Chem., 1999, 38, 2683–2687.

    Article  CAS  Google Scholar 

  30. M. Atsumi, L. González and C. Daniel, Spectroscopy of Ru(II) polypyridyl complexes used as intercalators in DNA: Towards a theoretical study of the light switch effect, J. Photochem. Photobiol., A, 2007, 190, 310–320.

    Article  CAS  Google Scholar 

  31. C. Moucheron, A. Kirsch-De Mesmaeker and S. Choua, Photophysics of Ru(phen)2(PHEHAT)2+: A novel “light switch” for DNA and photo-oxidant for mononucleotides, Inorg. Chem., 1997, 36, 584–592.

    Article  CAS  Google Scholar 

  32. S. Vasudevan, J. A. Smith, M. Wojdyla, A. DiTrapani, P. E. Kruger, T. McCabe, N. C. Fletcher, S. J. Quinn and J. M. Kelly, Substituted dipyridophenazine complexes of Cr(III): Synthesis, enantiomeric resolution and binding interactions with calf thymus DNA, Dalton Trans., 2010, 39, 3990–3998.

    Article  CAS  PubMed  Google Scholar 

  33. J. W. Verhoeven, On the role of spin correlation in the formation, decay, and detection of long-lived, intramolecular charge-transfer states, J. Photochem. Photobiol., C, 2006, 7, 40–60.

    Article  CAS  Google Scholar 

  34. L. S. Forster, The Photophysics of Chromium(III) Complexes, Chem. Rev., 1990, 90, 331–353.

    Article  CAS  Google Scholar 

  35. A. D. Kirk, Photochemistry and Photophysics of Chromium(III) Complexes, Chem. Rev., 1999, 99, 1607–1640.

    Article  CAS  PubMed  Google Scholar 

  36. R. J. Meier, On art and science in curve-fitting vibrational spectra, Vib. Spectrosc., 2005, 39, 266–269.

    Article  CAS  Google Scholar 

  37. N. A. P. Kane-Maguire, Photochemistry and Photophysics of Coordinated Compounds: Chromium, Top. Curr. Chem., 2007, 280, 37–67.

    Article  CAS  Google Scholar 

  38. B. Brunschwig and N. Sutin, Reactions of the Excited States of Substituted Polypyridinechromium(III) Complexes with Oxygen, Iron(II) Ions, Ruthenium(II) and -(III), and Osmium(II) and -(III) Complexes, J. Am. Chem. Soc., 1978, 100, 7568–7577.

    Article  CAS  Google Scholar 

  39. A. A. Abdel-Shafi, D. R. Worrall and A. Y. Ershov, Photosensitized generation of singlet oxygen from ruthenium(II) and osmium(II) bipyridyl complexes, Dalton Trans., 2004, 30–36.

    Google Scholar 

  40. E. A. Lewis, Dissolved Oxygen (version 2.1), in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Chapter A6, Section 6.2, 2006.

    Google Scholar 

  41. G. Neshvad, M. Z. Hoffman, M. Bolte, R. Sriram and N. Serpone, Photophysics of Chromium(III)-Polypyridyl Complexes. Effect of pH and [Cl-] on the Lifetimes of the 2T1/2E Excited States, Inorg. Chem., 1987, 26, 2984–2988.

    Article  CAS  Google Scholar 

  42. N. Serpone, M. A. Jamieson, R. Sriram and M. Z. Hoffman, Photophysics and Photochemistry of Polypyridyl Complexes of Chromium(III), Inorg. Chem., 1981, 20, 3983–3988.

    Article  CAS  Google Scholar 

  43. F. Bolletta, M. Maestri, L. Moggi, M. A. Jamieson, N. Serpone, M. S. Henry and M. Z. Hoffman, Photochemical, Photophysical, and Thermal Behavior of the Tris(1,10-phenanthroline)chromium(III) Ion in Aqueous Solution, Inorg. Chem., 1983, 22, 2502–2509.

    Article  CAS  Google Scholar 

  44. R. Sriram, M. Z. Hoffman, M. A. Jamieson and N. Serpone, Ground-State Quenching of the 2E Excited State of Cr(bpy)33+ and Cr(phen)33+, J. Am. Chem. Soc., 1980, 102, 1754–1756.

    Article  CAS  Google Scholar 

  45. K. D. Barker, B. R. Benoit, J. A. Bordelon, R. J. Davis, A. S. Delmas, O. V. Mytykh, J. T. Petty, J. F. Wheeler, N. A. P. Kane-Maguire, Intercalative binding and photoredox behavior of [Cr(phen)2(dppz)]3+ with B-DNA, Inorg. Chim. Acta, 2001, 322, 74–78.

    Article  CAS  Google Scholar 

  46. C. J. Burrows and J. G. Muller, Oxidative Nucleobase Modifications Leading to Strand Scission, Chem. Rev., 1998, 98, 1109–1152.

    Article  CAS  PubMed  Google Scholar 

  47. S. S. Shinde, A. Maroz, M. P. Hay and R. F. Anderson, One-Electron Reduction Potential of the Neutral Guanyl Radical in the GC Base Pair of Duplex DNA, J. Am. Chem. Soc., 2009, 131, 5203–5207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. A. Marton, C. C. Clark, R. Srinivasan, R. E. Freunlich, A. A. Narducci Sergeant and G. J. Meyer, Static and Dynamic Quenching of Ru(II) Polypyridyl Excited States by Iodide, Inorg. Chem., 2006, 45, 362–369.

    Article  CAS  PubMed  Google Scholar 

  49. O. V. Mytykh, S. E. Martin, J. F. Wheeler, N. A. P. Kane-Maguire, Application of capillary electrophoresis to stereochemical conversions. A case study: the photoracemization/hydrolysis of Cr(diimine)33+ species, Inorg. Chim. Acta, 2000, 311, 143–146.

    Article  CAS  Google Scholar 

  50. G. D. Reid, D. J. Whittaker, M. A. Day, D. A. Turton, V. Kayser, J. M. Kelly and G. S. Beddard, Femtosecond Electron-Transfer Reactions in Mono- and Polynucleotides and in DNA, J. Am. Chem. Soc., 2002, 124, 5518–5527.

    Article  CAS  PubMed  Google Scholar 

  51. J.-P. Lecomte, A. Kirsch-De Mesmaeker, M. M. Feeney and J. M. Kelly, Ruthenium(II) Complexes with 1,4,5,8,9,12-Hexaazatriphenylene and 1,4,5,8-Tetraazaphenanthrene Ligands: Key Role Played by the Photoelectron Transfer in DNA Cleavage and Adduct Formation, Inorg. Chem., 1995, 34, 6481–6491.

    Article  CAS  Google Scholar 

  52. J.-P. Lecomte, A. Kirsch-De Mesmaeker, J. M. Kelly, A. B. Tossi, H. Görner, Photo-induced electron transfer from nucleotides to ruthenium tristetraazaphenanthrene: model for photosensitised DNA oxidation, Photochem. Photobiol., 1992, 55, 681–689.

    Article  CAS  PubMed  Google Scholar 

  53. M. Maestri, F. Bolletta, L. Moggi, V. Balzani, M. S. Henry and M. Z. Hoffman, Mechanism of the photochemistry and photophysics of the tris(2,2′-bipyridine)chromium(III) ion in aqueous solution, J. Am. Chem. Soc., 1978, 100, 2694–2701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Kelly.

Additional information

The authors would like to pay tribute to the many contributions of Jan Verhoeven to photochemistry and photophysics.

Electronic supplementary information (ESI) available: Tabulated absorption data and emission peak-fitting parameters, emission decays, time-resolved emission spectra, emission-quenching spectra, Stern-Volmer plots of steady state and lifetime quenching, time-resolved absorption spectra and decay plots.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojdyla, M., Smith, J.A., Vasudevan, S. et al. Excited state behaviour of substituted dipyridophenazine Cr(iii) complexes in the presence of nucleic acids. Photochem Photobiol Sci 9, 1196–1202 (2010). https://doi.org/10.1039/c0pp00110d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00110d

Navigation