Skip to main content

Advertisement

Log in

Human serum albumin as key mediator of the differential accumulation of hypericin in normal urothelial cell spheroids versus urothelial cell carcinoma spheroids

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Hypericin is a bright red fluorescent compound that can be used in urological medicine as a photodiagnostic to detect non-muscle-invasive bladder cancer lesions. To this end a bladder instillation fluid is prepared in which the water-insoluble hypericin is solubilized by the presence of human serum albumin (HSA) to which the compound binds. In the present study, we explored the possibility that besides acting as a passive hypericin carrier, HSA also actively contributes to the selective localization of the compound. By using multicellular spheroids prepared from normal human urothelial (NHU) cells and from different urothelial carcinoma cell (UCC) lines (T24, RT-112 and RT-4), we simulated three-dimensionally the normal urothelium and urothelial cell carcinomas present in the bladder of patients. The distribution of hypericin in these spheroids was investigated in the presence or absence of HSA. Our data show that when hypericin is solubilized by HSA, an excellent differentiation in distribution of hypericin in normal urothelial spheroids and malignant spheroids is observed, clearly suggesting a key role for albumin in the specific localization of hypericin in non-muscle-invasive bladder tumours. Furthermore, PDT results show that both the hypericin-PDT effect on tumour spheroids and the selective character of the treatment can significantly be increased by the presence of HSA. Interestingly, we also observed that the presence of HSA did not convey tumouritropic characteristics to other photosensitizers like pheophorbide a and mTHPP, implying that both the particular characteristics of the photosensitizer and HSA contribute to the final selective accumulation of the compound in tumoural tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lavie, Y. Mazur, D. Lavie and D. Meruelo, The chemical and biological properties of hypericin–a compound with a broad spectrum of biological activities, Med. Res. Rev., 1995, 15, 111–119.

    Article  CAS  Google Scholar 

  2. M. A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. De Witte and L. Baert, Hypericin-based fluorescence diagnosis of bladder carcinoma, BJU Int., 2002, 89, 760–763.

    Article  Google Scholar 

  3. H. G. Sim, W. K. Lau, M. Olivo, P. H. Tan and C. W. Cheng, Is photodynamic diagnosis using hypericin better than white-light cystoscopy for detecting superficial bladder carcinomą, BJU Int., 2005, 95, 1215–1218.

    Article  Google Scholar 

  4. G. Lavie, Y. Mazur, D. Lavie, A. M. Prince, D. Pascual, L. Liebes, B. Levin and D. Meruelo, Hypericin as an inactivator of infectious viruses in blood components, Transfusion, 1995, 35, 392–400.

    Article  CAS  Google Scholar 

  5. J. Hritz, S. Kascakova, J. Ulicny and P. Miskovsky, Influence of structure of human, rat, and bovine serum albumins on binding properties of photoactive drug hypericin, Biopolymers, 2002, 67, 251–254.

    Article  Google Scholar 

  6. P. Miskovsky, J. Hritz, S. Sanchez-Cortes, G. Fabriciova, J. Ulicny and L. Chinsky, Interaction of hypericin with serum albumins: surface-enhanced Raman spectroscopy, resonance Raman spectroscopy and molecular modeling study, Photochem. Photobiol., 2001, 74, 172–183.

    Article  CAS  Google Scholar 

  7. W. T. Li, H. W. Tsao, Y. Y. Chen, S. W. Cheng and Y. C. Hsu, A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells, Photochem. Photobiol. Sci., 2007, 6, 1341–1348.

    Article  CAS  Google Scholar 

  8. L. Ma, J. Moan and K. Berg, Evaluation of a new photosensitizer, meso-tetra-hydroxyphenyl-chlorin, for use in photodynamic therapy: a comparison of its photobiological properties with those of two other photosensitizers, Int. J. Cancer, 1994, 57, 883–888.

    Article  CAS  Google Scholar 

  9. P. Jardon and R. Gautron, Propriétés photophysiques de l’hypercine en solution et en dispersion micellaire, J. Chim. Phys., 1989, 86, 2173–2190.

    Article  CAS  Google Scholar 

  10. A. P. Darmanyan, L. Burel, D. Eloy and P. Jardon, Singlet oxygen production by hypericin in various solvents, J. Chim. Phys., 1994, 91, 1174–1785.

    Article  Google Scholar 

  11. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  Google Scholar 

  12. A. Huygens, A. R. Kamuhabwa, T. Roskams, B. Van Cleynenbreugel, H. Van Poppel and P. A. de Witte, Permeation of hypericin in spheroids composed of different grade transitional cell carcinoma cell lines and normal human urothelial cells, J. Urol., 2005, 174, 69–72.

    Article  CAS  Google Scholar 

  13. A. Huygens, I. Crnolatac, J. Develter, B. Van Cleynenbreugel, T. Van Der Kwast and P. A. de Witte, Differential accumulation of hypericin in spheroids composed of T-24 transitional cell carcinoma cells expressing different levels of E-cadherin, J. Urol., 2008, 179, 2014–2019.

    Article  CAS  Google Scholar 

  14. E. M. Delaey, R. Obermueller, I. Zupko, D. De Vos, H. Falk and P. A. de Witte, In vitro study of the photocytotoxicity of some hypericin analogs on different cell lines, Photochem. Photobiol., 2001, 74, 164–171.

    Article  CAS  Google Scholar 

  15. N. S. Bryce, J. Z. Zhang, R. M. Whan, N. Yamamoto and T. W. Hambley, Accumulation of an anthraquinone and its platinum complexes in cancer cell spheroids: the effect of charge on drug distribution in solid tumour models, Chem. Commun., 2009, 2673–2675.

    Google Scholar 

  16. P. Miškovský, D. Jancura, S. Sánchez-Cortés, E. Koišová and L. Chinsky, Antiretrovirally Active Drug Hypericin Binds the IIA Subdomain of Human Serum Albumin: Resonance Raman and Surface-Enhanced Raman Spectroscopy Study, J. Am. Chem. Soc., 1998, 120, 6374–6379.

    Article  Google Scholar 

  17. A. Boiy, R. Roelandts, J. Van Den Oord and P. A. de Witte, Photosensitizing activity of hypericin and hypericin acetate after topical application on normal mouse skin, Br. J. Dermatol., 2007, 158, 360–369.

    Article  Google Scholar 

  18. H. Falk, J. Meyer and M. Oberreiter, A convenient semisynthetic route to hypericin, Monatsh. Chem., 1993, 124, 339–341.

    Article  CAS  Google Scholar 

  19. J. Southgate, J. R. W. Masters and L. K. Trejdosiewicz, in Culture of specialized cells: Culture of epithelial cells, ed. I. Freshney and M. G. Freshney, Wiley-Liss, New York, 2nd edn, 2002, ch. 12, pp. 381–399.

  20. J. M. Yuhas, A. P. Li, A. O. Martinez and A. J. Ladman, A simplified method for production and growth of multicellular tumor spheroids, Cancer Res., 1977, 37, 3639–3643.

    CAS  PubMed  Google Scholar 

  21. M. A. D’Hallewin, P. A. De Witte, E. Waelkens, W. Merlevede and L. Baert, Fluorescence detection of flat bladder carcinoma in situ after intravesical instillation of hypericin, J. Urol., 2000, 164, 349–351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. M. de Witte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roelants, M., Van Cleynenbreugel, B., Lerut, E. et al. Human serum albumin as key mediator of the differential accumulation of hypericin in normal urothelial cell spheroids versus urothelial cell carcinoma spheroids. Photochem Photobiol Sci 10, 151–159 (2011). https://doi.org/10.1039/c0pp00109k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00109k

Navigation