Skip to main content
Log in

Cis-Trans isomerisation of azobenzenes studied by laser-coupled NMR spectroscopy and DFT calculations

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In a combined experimental and computational study of a group of para-substituted azobenzenes, the effects of substituents and solvent on the kinetics of thermal cis-to-transisomerisation have been examined and the success of DFT calculations in predicting kinetic parameters assessed. Mono-substituted species are predicted to isomerise by inversion in both non-polar and polar solvent, whereas for push-pull azobenzenes the mechanism is predicted to change from inversion to rotation on going from non-polar to polar solvent. Computed free energies of activation qualitatively reproduce experimental trends but do not quantitatively predict the kinetics of cis-trans isomerisation. The polarisable continuum model of solvation fails to predict the experimentally observed influence of solvent on the entropy of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Hartley, Cis form of azobenzene, Nature, 1937, 140, 281.

    Article  CAS  Google Scholar 

  2. O. Sus, H. Steppan and R. Dietrich, Light induced reactions of diazo compounds, Justus Liebigs Ann. Chem., 1958, 617, 20–25.

    Article  CAS  Google Scholar 

  3. E. R. Talaty and J. C. Fargo, Thermal Cis-trans isomerization of substituted azobenzenes: a correction of the literature, Chem. Commun., 1967, 65–66.

    Google Scholar 

  4. T. Asano, T. Okada, S. Shinkai, K. Shigematsu, Y. Kusano and O. Manabe, temperature and pressure dependences of the thermal cis-trans isomerization of azobenzenes which evidence an inversion mechanism, J. Am. Chem. Soc., 1981, 103, 5161.

    Article  CAS  Google Scholar 

  5. D. Gegiou, A. Muszkat and J. Fischer, Temperature dependence of photoisomerization. v. the effect of substituents on the photoisomerization of stilbenes and azobenzenes, J. Am. Chem. Soc., 1968, 90, 3907.

    Article  CAS  Google Scholar 

  6. N. Nishimura, T. Sueyoshi, H. Yamanaka, E. Imai, S. Yamamoto and S. Hasegawa, Thermal cis-to-trans isomerization of substituted azobenzenes. II Substituent and solvent effects, Bull. Chem. Soc. Jpn., 1976, 49, 1381–1387.

    Article  CAS  Google Scholar 

  7. N. Nishimura, S. Kosako and Y. Sueishi, The thermal isomerization of azobenzenes. III Substituent, solvent, and pressure effects on the thermal isomerization of push-pull azobenzenes, Bull. Chem. Soc. Jpn., 1984, 57, 1617–1625.

    Article  CAS  Google Scholar 

  8. P. D. Wildes, J. G. Pacifici, G. Irick and D. G. Whitten, Solvent and substituents effects on the thermal isomerization of substituted azobenzenes. A flash spectroscopy study, J. Am. Chem. Soc., 1971, 93, 2004–2008.

    Article  Google Scholar 

  9. T. Sueyoshi, N. Nishimura, S. Yamamoto and S. Hasegawa, Further evidence of inversion mechanism for the cis-trans thermal isomerization of 4-dimethylaminoazobenzene derivatives. Additivity rule of substituent constants, Chem. Lett., 1974, 1131–1134.

    Google Scholar 

  10. N. Nishimura, S. Tanaka and Y. Sueishi, Evidence of an inversion mechanism for the thermal cis-trans isomerization of push-pull azobenzenes. A volumetric study, J. Chem. Soc., Chem. Commun., 1985, 903–904.

    Google Scholar 

  11. T. Asano and T. Okada, Further kinetic evidence for the competitive rotational and inversional z-e isomerization of substituted azobenzenes, J. Org. Chem., 1986, 51, 4454–4458.

    Article  CAS  Google Scholar 

  12. K. S. Schanze, T. F. Mattox and D. G. Whitten, Solvent effects upon the thermal cis-trans isomerization and charge-transfer absorption of 4-(diethylamino)-4′-nitroazobenzene, J. Org. Chem., 1983, 48, 2808–2813.

    Article  CAS  Google Scholar 

  13. Z. F. Liu, K. Morigaki, T. Enomoto, K. Hashimoto and A. Fujishima, Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film, J. Phys. Chem., 1992, 96, 1875–1880.

    Article  CAS  Google Scholar 

  14. K. G. Yager and C. J. Barrett, Novel photo-switching using azobenzene functional materials, J. Photochem. Photobiol., A, 2006, 182, 250–261.

    Article  CAS  Google Scholar 

  15. M. Irie, Photochromism: memories and switches-introduction, Chem. Rev., 2000, 100, 1683–1684.

    Article  CAS  Google Scholar 

  16. M. B. Sponsler, in Optical Sensors and Switches, (Eds: V. Ramamurthy, K. S. Schanze), Marcel Dekker, New York and Basel, 2001, Chapter 8.

  17. R. H. El Halabieh, O. Mermut and C. J. Barrett, Using light to control physical properties of polymers and surfaces with azobenzene chromophores, Pure Appl. Chem., 2004, 76, 1445–1465.

    Article  Google Scholar 

  18. V. Balzani, A. Credi and M. Venturi, Light-powered molecular-scale machines, Pure Appl. Chem., 2003, 75, 541–547.

    Article  CAS  Google Scholar 

  19. J. Dokic, M. Gothe, J. Wirth, M. V. Peters, J. Schwartz, S. Hecht and P. Saalfrank, Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data, J. Phys. Chem. A, 2009, 113, 6763–6773.

    Article  CAS  Google Scholar 

  20. K. M. Tait, J. A. Parkinson, S. P. Bates, W. J. Ebenezer and A. C. Jones, The novel use of NMR spectroscopywith in situ laser irradiation to study azo photoisomerisation, J. Photochem. Photobiol., A, 2003, 154, 179–188.

    Article  CAS  Google Scholar 

  21. K. M. Tait, J. A. Parkinson, D. I. Gibson, P. R. Richardson, W. J. Ebenezer, M. G. Hutchings and A. C. Jones, Structural characterisation of the photoisomers of reactive sulfonated azo dyes by NMR spectroscopy and DFT calculations, Photochem. Photobiol. Sci., 2007, 6, 1010–1018.

    Article  CAS  Google Scholar 

  22. K. M. Tait, J. A. Parkinson, A. C. Jones, W. J. Ebenezer and S. P. Bates, Comparison of experimental and calculated 1H NMR chemical shifts of geometric photoisomers of azo dyes, Chem. Phys. Lett., 2003, 374, 372–380.

    Article  CAS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision B.02), Gaussian, Inc., Wallingford, CT, 2004.

    Google Scholar 

  24. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behaviour, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098.

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter, 1988, 37, 785.

    Article  CAS  Google Scholar 

  26. S. Miertus, E. Scrocco and J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys., 1981, 55, 117–129.

    Article  CAS  Google Scholar 

  27. M. Cossi, G. Scalmani, N. Rega and V. Barone, New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution, J. Chem. Phys., 2002, 117, 43–54.

    Article  CAS  Google Scholar 

  28. M. Poprawa-Smoluch, J. Baggerman, H. Zhang, H. P. A. Maas, L. DeCola and A. M. Brouwer, Photoisomerization of disperse red 1 studied with transient absorption spectroscopy and quantum chemical calculations, J. Phys. Chem. A, 2006, 110, 11926–11937.

    Article  CAS  Google Scholar 

  29. K. Matczyszyn, W. Bartkowiak and J. Leszczynki, Influence of the environment on kinetics and electronic structure of asymmetric azobenzene derivatives - experiment and quantum-chemical calculations, J. Mol. Struct., 2001, 565–566, 53–57.

    Article  Google Scholar 

  30. C. Reichardt, Empirical parameters of the polarity of solvents, Angew. Chem., Int. Ed. Engl., 1965, 4, 29–40.

    Article  Google Scholar 

  31. R. G. Pearson, Influence of the solvent on rates of ionization, entropies, and heats of activation, J. Chem. Phys., 1952, 20, 1478–1480.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is published as part of a themed issue in appreciation of the many important contributions made to the field of molecular photophysics by Jan Verhoeven.

Electronic supplementary information (ESI) available: NMR spectra. See DOI: 10.1039/c0pp00056f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wazzan, N.A., Richardson, P.R. & Jones, A.C. Cis-Trans isomerisation of azobenzenes studied by laser-coupled NMR spectroscopy and DFT calculations. Photochem Photobiol Sci 9, 968–974 (2010). https://doi.org/10.1039/c0pp00056f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00056f

Navigation