Skip to main content
Log in

Key reaction intermediates of the photochemical oxygenation of alkene sensitized by RuII–porphyrin with water by visible light

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two key reaction intermediates in the photochemical oxygenation of alkene sensitized by carbonyl-coordinated ruthenium(ii)–porphyrin complex, with water acting both as an electron and oxygen atom donor, are postulated. Under the low concentration of hydroxide ion (<2 × 10−3 M) added to the reaction mixture of tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(ii) (RuIITMP(CO)), K4PtCl6 as a sacrificial electron acceptor, and cyclohexene as a substrate in aqueous acetonitrile, the major reaction product was cyclohexaneoxide (“Epoxide”), while it drastically decreased along with an increase of 2-cyclohexenol (“Alcohol”) by increasing the amount of hydroxide ion (>2 × 10−3 M). The tendency was more obvious in the case of tetrasodium tetra(4-sulfonate)phenylporphyrinatoruthenium(ii) (RuIITSPP(CO)) in aqueous solution. The “Alcohol” was exclusively formed in the higher concentration region of OH, strongly suggesting the presence of acid–base equilibrium among two reaction intermediates. Theoretical DFT calculation indicates that the hydroxyl-coordinated one-electron oxidized Ru–porphyrin (Intermediate (I)), which is formed by the axial ligation of hydroxide ion to the cation radical of Ru–porphyrin generated through electron transfer from the excited triplet state of the sensitizer porphyrins, suffers deprotonation of its axial hydroxidegroup to lead to an oxo-type complex (Intermediate (II)) formation. The DFT calculation also indicates that the electron spin on the Intermediate (I) is shared by the axial oxygen atom and the central Ru metal, while it is mostly localized on the axial oxygen atom to behave as an oxygen radical in the case of the Intermediate (II). These are very strong indications towards understanding how OH (water molecule) is oxidatively activated on the Ru center: the water molecule is serving as an electron donor ion in the redox cycles. Theoretical calculation predicts that Intermediate (I) allows the epoxidation of alkene and Intermediate (II) can proceed through hydrogen abstraction from the substrate and is rebound to form hydroxylated compound, “Alcohol.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kalyanasundaram and M. Gratzel, Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, and references therein.

    Book  Google Scholar 

  2. A. J. Bard and M. A. Fox, Acc. Chem. Res., 1995, 28, 141, and references therein.

    Article  CAS  Google Scholar 

  3. J. -M. Lehn, J. -P. Sauvage, Nouv. J. Chim., 1977, 1, 449.

    CAS  Google Scholar 

  4. A. Moradpour, E. Amouyal, P. Keller and H. Kagan, Nouv. J. Chim., 1978, 2, 547.

    CAS  Google Scholar 

  5. A. Harriman, G. Porter, M. -C. Richoux, J. Chem. Soc., Faraday Trans. 2, 1981, 77, 833.

    Article  CAS  Google Scholar 

  6. O. Johansen, A. W. H. Mau and W. H. F. Sass, Chem. Phys. Lett., 1983, 94, 113.

    Article  CAS  Google Scholar 

  7. M. Gratzel, Energy Resources through Photochemistry and Catalysis, Academic Press, New York, 1983.

    Google Scholar 

  8. T. Kawai and T. Sakata, Nature, 1980, 286, 474.

    Article  CAS  Google Scholar 

  9. J. -M. Lehn, J. -P. Sauvage and R. Ziessel, Nouv. J. Chim., 1979, 3, 423.

    CAS  Google Scholar 

  10. W. Erbs, J. Kiwi and M. Gratzel, Chem. Phys. Lett., 1984, 110, 648.

    Article  CAS  Google Scholar 

  11. W. Erbs, J. Desilvestro, E. Borgarello and M. Gratzel, J. Phys. Chem., 1984, 88, 4001.

    Article  CAS  Google Scholar 

  12. G. S. Nahor, S. Mosseri, P. Neta and A. Harriman, J. Phys. Chem., 1988, 92, 4499.

    Article  CAS  Google Scholar 

  13. G. S. Nahor, P. Neta, P. Hambright, A. N. Thompson Jr. and A. Harriman, J. Phys. Chem., 1989, 93, 6181.

    Article  CAS  Google Scholar 

  14. M. Kaneko, G. -J. Yao and A. Kira, J. Chem. Soc., Chem. Commun., 1989, 1338.

    Google Scholar 

  15. A. Harriman, J. Photochem. Photobiol., A, 1990, 51, 41.

    Article  CAS  Google Scholar 

  16. T. J. Meyer, Acc. Chem. Res., 1989, 22, 163.

    Article  CAS  Google Scholar 

  17. D. Geselowitz and T. J. Meyer, Inorg. Chem., 1990, 29, 3894.

    Article  CAS  Google Scholar 

  18. U. Bossek, T. Weyhermuller, K. Wieghardtk, B. Nuber and J. Weiss, J. Am. Chem. Soc., 1990, 112, 6387.

    Article  CAS  Google Scholar 

  19. H. Inoue and M. Hida, Bull. Chem. Soc. Jpn., 1982, 55, 2692.

    Google Scholar 

  20. S. Takagi, T. Okamoto, T. Shiragami and H. Inoue, Chem. Lett., 1993, 793, 2288.

    Google Scholar 

  21. K. Maruo, Y. Wada and S. Yanagida, Bull. Chem. Soc. Jpn., 1992, 65, 3439.

    Article  CAS  Google Scholar 

  22. K. Maruo, Y. Wada and S. Yanagida, Chem. Lett., 1993, 565.

    Google Scholar 

  23. Y. Kitamura, K. Maruo, Y. Wada, K. Murakoshi, T. Akano and S. Yanagida, J. Chem. Soc., Chem. Commun., 1995, 2189.

    Google Scholar 

  24. T. Kitamura, Y. Wada, K. Murakoshi, M. Kusaba, N. Nakashima, A. Ishida, T. Majima, S. Takamuku, T. Akano and S. Yanagida, J. Chem. Soc., Faraday Trans., 1996, 92, 3491.

    Article  CAS  Google Scholar 

  25. T. Kitamura, H. Fudemoto, Y. Wada, K. Murakoshi, M. Kusaba, N. Nakashima, T. Majima and S. Yanagida, J. Chem. Soc., Faraday Trans., 1997, 93, 221.

    Article  CAS  Google Scholar 

  26. T. Shiragami, K. Kubomura, D. Ishibashi and H. Inoue, J. Am. Chem. Soc., 1996, 118, 6311.

    Article  CAS  Google Scholar 

  27. S. Takagi, M. Suzuki, T. Shiragami and H. Inoue, J. Am. Chem. Soc., 1997, 119, 8712.

    Article  CAS  Google Scholar 

  28. S. Funyu, T. Isobe, S. Takagi, D. A. Tryk and H. Inoue, J. Am. Chem. Soc., 2003, 125, 5734.

    Article  CAS  Google Scholar 

  29. R. W. Wagner, D. S. Lawrence and J. S. Lindsey, Tetrahedron Lett., 1987, 28, 3069.

    Article  CAS  Google Scholar 

  30. D. P. Rillema, J. K. Nagle, L. F. Barringer Jr. and T. J. Meyer, J. Am. Chem. Soc., 1981, 103, 56.

    Article  CAS  Google Scholar 

  31. M. Barley, J. Y. Becker, G. Domazetis, D. Dolphin and B. R. James, J. Chem. Soc., Chem. Commun., 1981, 982.

    Google Scholar 

  32. M. H. Barley, D. Dolphin and B. R. James, J. Chem. Soc., Chem. Commun., 1984, 1499.

    Google Scholar 

  33. J. T. Groves, M. Bonchio, T. Carofiglio and K. Shalyaev, J. Am. Chem. Soc., 1996, 118, 8961.

    Article  CAS  Google Scholar 

  34. J. T. Groves and P. Viski, J. Am. Chem. Soc., 1989, 111, 8537.

    Article  CAS  Google Scholar 

  35. K. Yoshizawa, Coord. Chem. Rev., 2002, 226, 251–259.

    Article  CAS  Google Scholar 

  36. S. P. de Visser, F. Ogliaro, P. K. Sharma and S. Shaik, J. Am. Chem. Soc., 2002, 124, 11809.

    Article  Google Scholar 

  37. J. C. Schoneboon, S. Cohen, H. Lin, S. Shaik and W. Thiel, J. Am. Chem. Soc., 2004, 126, 4017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Inoue.

Additional information

† This article is published as part of a themed issue in appreciation of the many important contributions made to the field of molecular photophysics by Jan Verhoeven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funyu, S., Kinai, M., Masui, D. et al. Key reaction intermediates of the photochemical oxygenation of alkene sensitized by RuII–porphyrin with water by visible light. Photochem Photobiol Sci 9, 931–936 (2010). https://doi.org/10.1039/c0pp00052c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00052c

Navigation