Skip to main content
Log in

Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The induction (sudden dark-to-light transition) of fluorescence of photosynthetic bacteria has proved to be sensitive tool for early detection of mercury (Hg2+) contamination of the culture medium. The major characteristics of the induction (dark, variable and maximum fluorescence levels together with rise time) offer an easier, faster and more informative assay of indication of the contamination than the conventional techniques. The inhibition of Hg2+ is stronger in the light than in the dark and follows complex kinetics. The fast component (in minutes) reflects the damage of the quinone acceptor pool of the RC and the slow component (in hours) is sensitive to the disintegration of the light harvesting system including the loss of the structural organization and of the pigments. By use of fluorescence induction, the dependence of the diverse pathways and kinetics of the mercury-induced effects on the age and the metabolic state of the bacteria were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Barregard, E. Fabricius-Lagging, T. Lundh, J. Mölne, M. Wallin, M. Olausson, C. Modigh and G. Sallsten, Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources, Environ. Res., 2010, 110, 47–54.

    Article  CAS  Google Scholar 

  2. F. Borsetti, P. L. Martelli, R. Casadio and D. Zannoni, Metals and Metalloids in Photosynthetic Bacteria: Interactions, Resistance and Putative Homeostasis Revealed by Genome Analysis, The Purple Phototrophic Bacteria, Springer, Dordrecht, The Netherlands, 2009, pp. 655–689.

    Chapter  Google Scholar 

  3. A. Malik, Metal bioremediation through growing cells, Environ. Int., 2004, 30, 261–278.

    Article  CAS  Google Scholar 

  4. S. Silver, Bacterial resistances to toxic metal ions—a review, Gene, 1996, 179, 9–19.

    Article  CAS  Google Scholar 

  5. F. Pisani, F. Italiano, F. de Leo, R. Gallerani, S. Rinalducci, L. Zolla, A. Agostiano, L. R. Ceci and M. Trotta, Soluble proteome investigation of cobalt effect on the carotenoidless mutant of Rhodobacter sphaeroides, J. Appl. Microbiol., 2009, 106, 338–349.

    Article  CAS  Google Scholar 

  6. A. Buccolieri, F. Italiano, A. Dell’Atti, G. Buccolieri, L. Giotta, A. Agostiano, F. Milano and M. Trotta, Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool, Ann. Chim., 2006, 96, 195–204.

    Article  CAS  Google Scholar 

  7. F. Italiano, A. Buccolieri, L. Giotta, A. Agostiano, L. Valli, F. Milano and M. Trotta, Response of the carotenoidless mutant Rhodobacter sphaeroides growing cells to cobalt and nickel exposure, Int. Biodeterior. Biodegrad., 2009, 63, 948–957.

    Article  CAS  Google Scholar 

  8. J. F. Imhoff, Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

    Google Scholar 

  9. W. R. Sistrom, The Kinetics of the Synthesis of Photopigments in Rhodopseudomonas spheroides, J. Gen. Microbiol., 1962, 28, 607–616.

    Article  CAS  Google Scholar 

  10. P. Maróti, Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides, Eur. Biophys. J., 2008, 37, 1175–1184.

    Article  Google Scholar 

  11. D. Bina, R. Litvin and F. Vacha, Kinetics of in vivo bacteriochlorophyll fluorescence yield and the state of photosynthetic apparatus of purple bacteria, Photosynth. Res., 2009, 99, 115–125.

    Article  CAS  Google Scholar 

  12. H.-W. Trissl, Antenna organization in purple bacteria investigated by means of fluorescence induction curves, Photosynth. Res., 1996, 47, 175–185.

    Article  CAS  Google Scholar 

  13. E. Asztalos, P. Maróti, Export or recombination of charges in reaction centers in intact cells of photosynthetic bacteria, Biochim. Biophys. Acta, Bioenerg., 2009, 1787, 1444–1450.

    Article  CAS  Google Scholar 

  14. M. Koblizek, J. D. Shih, S. I. Breitbart, E. C. Ratcliffe, Z. S. Kolber, C. N. Hunter and R. A. Niederman, Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence, Biochim. Biophys. Acta, Bioenerg., 2005, 1706, 220–231.

    Article  CAS  Google Scholar 

  15. M. H. Zwietering, I. Jongenburger, F. M. Rombouts, K. van’t Riet, Modeling of the Bacterial Growth Curve, Appl. Environ. Microbiol., 1990, 56, 1875–1881.

    Article  CAS  Google Scholar 

  16. M. H. Zwietering, F. M. Rombouts, K. van’t Riet, Comparison of definitions of the lag phase and the exponential phase in bacterial growth, J. Appl. Bacteriol., 1992, 72, 139–145.

    Article  CAS  Google Scholar 

  17. S. H. Kim and R. P. Sharma, Mercury-induced apoptosis and necrosis in murine macrophages: role of calcium-induced reactive oxygen species and p38 mitogen-activated protein kinase signaling, Toxicol. Appl. Pharmacol., 2004, 196, 47–57.

    Article  CAS  Google Scholar 

  18. N. Fernandez and R. Beiras, Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin, Ecotoxicology, 2001, 10, 263–271.

    Article  CAS  Google Scholar 

  19. Q. Wang, B. Liu, H. Yang, X. Wang and Z. Lin, Toxicity of lead, cadmium and mercury on embryogenesis, survival, growth and metamorphosis of Meretrix meretrix larvae, Ecotoxicology, 2009, 18, 829–837.

    Article  CAS  Google Scholar 

  20. H. Clijsters and F. Assche, Inhibition of photosynthesis by heavy metals, Photosynth. Res., 1985, 7, 31–40.

    Article  CAS  Google Scholar 

  21. M. Gadallah, Interactive effect of heavy metals and temperature on the growth, and chlorophyll, saccharides and soluble nitrogen contents in Phaseolus plants, Biol. Plant., 1994, 36, 373–382.

    Article  CAS  Google Scholar 

  22. K.-N. Lars, The Effect of Deleterious Concentrations of Mercury on the Photosynthesis and Growth of Chlorella pyrenoidosa, Physiol. Plant., 1971, 24, 556–561.

    Article  Google Scholar 

  23. C. M. Lu, C. W. Chau and J. H. Zhang, Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis - assessment by chlorophyll fluorescence analysis, Chemosphere, 2000, 41, 191–196.

    Article  CAS  Google Scholar 

  24. S. Murthy and P. Mohanty, Mercury ions inhibit photosynthetic electron transport at multiple sites in the cyanobacterium Synechococcus 6301, J. Biosci., 1993, 18, 355–360.

    Article  CAS  Google Scholar 

  25. M. Patra and A. Sharma, Mercury toxicity in plants, Bot. Rev., 2000, 66, 379–422.

    Article  Google Scholar 

  26. X. Du, Y. G. Zhu, W. J. Liu and X. S. Zhao, Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake, Environ. Exp. Bot., 2005, 54, 1–7.

    Article  CAS  Google Scholar 

  27. D. W. Boening, Ecological effects, transport, and fate of mercury: a general review, Chemosphere, 2000, 40, 1335–1351.

    Article  CAS  Google Scholar 

  28. L. Giotta, A. Agostiano, F. Italiano, F. Milano and M. Trotta, Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides, Chemosphere, 2006, 62, 1490–1499.

    Article  CAS  Google Scholar 

  29. R. J. Cogdell and J. P. Thomber, Light-harvesting pigment—protein complexes of purple photosynthetic bacteria, FEBS Lett., 1980, 122, 1–8.

    Article  CAS  Google Scholar 

  30. C. Rafferty, J. Bolt, K. Sauer and R. Clayton, Photooxidation of antenna bacteriochlorophyll in chromatophores from carotenoidless mutant Rhodopseudomonas sphaeroides and the attendant loss of dimeric exciton interaction, Proc. Natl. Acad. Sci. U. S. A., 1979, 76, 4429–4432.

    Article  CAS  Google Scholar 

  31. M. Bernier and R. Carpentier, The action of mercury on the binding of the extrinsic polypeptides associated with the water oxidizing complex of photosystem II, FEBS Lett., 1995, 360, 251–254.

    Article  CAS  Google Scholar 

  32. F. Šeršeň, K. Král’ová, A. Bumbálová, Action of Mercury on the Photosynthetic Apparatus of Spinach Chloroplasts, Photosynthetica, 1998, 35, 551–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Trotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asztalos, E., Italiano, F., Milano, F. et al. Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria. Photochem Photobiol Sci 9, 1218–1223 (2010). https://doi.org/10.1039/c0pp00040j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00040j

Navigation