Skip to main content

Advertisement

Log in

Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Time-resolved photoacoustic calorimetry (PAC) allows the measurement of lifetimes and energy fractions of molecular nonradiative deactivation processes, as well as structural volume changes associated with such processes. The photoinduced acoustic wave generated by a given photochemical sample, E(t), is the result of the convolution between the heat function H(t), describing the kinetics of the photochemical processes in the sample, and the instrument response given by a calorimetric reference wave, T(t). A relatively simple mathematical description of the T(t) wave parametrized by the rise time, frequencies and damping time of the transducer is presented for transducers of distinct frequencies. This description allows for a non-restrictive analytical solution of the convolution of the T(t) wave with the heat function. Comparison of the analytical solution with the experimental wave E(t) allows the determination of the fractions of excitation energy and lifetimes of the intermediate species. Published photochemical systems with two and three sequential decaying processes were analyzed to validate the efficacy of this method. This new method of analysis, and a software application that simulates E(t), allows a better understanding of the underlying physics through their phenomenological description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. N. Patel and A. C. Tam, Pulsed optoacoustic spectroscopy of condensed matter, Rev. Mod. Phys., 1981, 53, 517–550

    Article  CAS  Google Scholar 

  2. H. Chen and G. J. Diebold, Production of the photoacoustic effect and transient gratings by molecular volume changes, J. Chem. Phys., 1996, 104, 6730–6741.

    Article  CAS  Google Scholar 

  3. S. E. Braslavsky and G. E. Heibel, Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution, Chem. Rev., 1992, 92, 1381–1410

    Article  CAS  Google Scholar 

  4. T. Gensch and C. Viappiani, Introducing the time-resolved methods in biophysics series, Photochem. Photobiol. Sci., 2006, 5, 1101–1102.

    Article  CAS  PubMed  Google Scholar 

  5. J. B. Callis, W. W. Parson and M. Gouterrman, Fast changes of enthalpy and volume on flash excitation of chromatium chromatophores, Biochim. Biophys. Acta, Bioenerg., 1972, 267, 348–362

    Article  CAS  Google Scholar 

  6. J. A. Westrick, J. L. Goodman and K. S. Peters, A time-resolved photoacoustic calorimetry study of the dynamics of enthalpy and volume changes produced in the photodissociation of carbon-monoxide from sperm whale carboxymyoglobin, Biochemistry, 1987, 26, 8313–8318

    Article  CAS  PubMed  Google Scholar 

  7. T. Gensch and S. E. Braslavsky, Volume changes related to triplet formation of water-soluble porphyrins. A laser-induced optoacoustic spectroscopy (LIOAS) study, J. Phys. Chem. B, 1997, 101, 101–108

    Article  CAS  Google Scholar 

  8. A. Chakrabarty, P. Purkayastha and N. Chattopadhyay, Laser induced optoacoustic spectroscopy of benzil: evaluation of structural volume change upon photoisomerization, J. Photochem. Photobiol., A, 2008, 198, 256–261.

    Article  CAS  Google Scholar 

  9. L. G. Arnaut and M. Pineiro, Two-photon photoacoustic calorimetry and the absolute measurement of molar absorption coefficients of transient species in solution, Photochem. Photobiol. Sci., 2003, 2, 749.

    Article  CAS  PubMed  Google Scholar 

  10. R. W. Larsen and J. Miksovska, Time resolved thermodynamics of ligand binding to heme proteins, Coord. Chem. Rev., 2007, 251, 1101–1127.

    Article  CAS  Google Scholar 

  11. C. Serpa, J. Schabauer, A. P. Piedade, C. J. P. Monteiro, M. M. Pereira, P. Douglas, H. D. Burrows and L. G. Arnaut, Photoacoustic measurement of electron injection efficiencies and energies from excited sensitizer dyes into nanocrystalline TiO2 films, J. Am. Chem. Soc., 2008, 130, 8876–8877.

    Article  CAS  PubMed  Google Scholar 

  12. T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette and J. L. Daschbach, A new angle into time-resolved photoacoustic spectroscopy: a layered prism cell increases experimental flexibility, Rev. Sci. Instrum., 1998, 69, 2246–2258

    Article  CAS  Google Scholar 

  13. M. S. Churio, K. P. Angermund and S. E. Braslavsky, Combination of laser-induced optoacoustic spectroscopy (LIOAS) and semiempirical calculations for the determination of molecular volume changes - the photoisomerization of carbocyanines, J. Phys. Chem., 1994, 98, 1776–1782

    Article  CAS  Google Scholar 

  14. O. V. Puchenkov and S. Malkin, Rev. Sci. Instrum., 1996, 67, 672–680.

    Article  CAS  Google Scholar 

  15. L. G. Arnaut, R. A. Caldwell, J. E. Elbert and L. A. Melton, Recent advances in photoacoustic calorimetry - theoretical basis and improvements in experimental design, Rev. Sci. Instrum., 1992, 63, 5381–5389.

    Article  CAS  Google Scholar 

  16. O. V. Puchenkov, Photoacoustic diagnosis of fast photochemical and photobiological processes - analysis of inverse problem solution, Biophys. Chem., 1995, 56, 241–261.

    Article  CAS  PubMed  Google Scholar 

  17. J. E. Rudzki, J. L. Goodman and K. S. Peters, Simultaneous determination of photoreaction dynamics and energetics using pulsed, time-resolved photoacoustic calorimetry, J. Am. Chem. Soc., 1985, 107, 7849–7854

    Article  CAS  Google Scholar 

  18. J. R. Small, L. J. Libertini and E. W. Small, Analysis of photoacoustic wave-forms using the nonlinear least-squares method, Biophys. Chem., 1992, 42, 29–48.

    Article  CAS  PubMed  Google Scholar 

  19. Sound Analysis: www.quantumnorthwest.com/manuals/sound_analysis/M1Frame.html, accessed on 3rd February 2010

  20. C. Serpa and L. G. Arnaut, Does molecular size matter in photoinduced electron transfer reactions?, J. Phys. Chem. A, 2000, 104, 11075–11086

    Article  CAS  Google Scholar 

  21. N. Chattopadhyay, C. Serpa, P. Purkayastha, L. G. Arnaut and S. J. Formosinho, Photocyclization of triphenylamine: an investigation through time-resolved photoacoustic calorimetry, Phys. Chem. Chem. Phys., 2001, 3, 70–73

    Article  CAS  Google Scholar 

  22. N. Chattopadhyay, C. Serpa, L. G. Arnaut and S. J. Formosinho, Energetics of photocyclization of polyphenylamines and assignments of the intermediate: a time-resolved photoacoustic calorimetric study, Phys. Chem. Chem. Phys., 2001, 3, 3690–3695.

    Article  CAS  Google Scholar 

  23. G. J. Diebold, M. I. Khan and S. M. Park, Photoacoustic signatures of particulate matter - optical production of acoustic monopole radiation, Science, 1990, 250, 101–104

    Article  CAS  PubMed  Google Scholar 

  24. V. Gusev, W. Craig, R. LiVoti, S. Danworaphong and G. J. Diebold, Mathematical analysis of thermal diffusion shock waves, Phys. Rev. E, 2005, 72, 041205.

    Article  CAS  Google Scholar 

  25. G. J. Diebold, in Photoacoustic Imaging and Spectroscopy, ed. Lihong V. Wang, CRC Press, New York, 1st edn, 2009, part 1, ch. 1, pp. 3–18

  26. J. J. More, B. S. Garbow and K. E. Hillstrom, Assoc. Comput. Mach., Trans. Math. Software, 1981, 7, 17–41

    Article  Google Scholar 

  27. C/C++ Minpack: http://devernay.free.fr/hacks/cminpack.html (11/11/2008).

  28. S. J. Formosinho and L. G. Arnaut, Adv. Photochem., 1991, 16, 67–117.

    CAS  Google Scholar 

  29. N. J. Turro, V. Ramamurthy and J. C. Scaiano in Principles of Molecular Photochemistry, University Science Books, USA, 2009.

    Google Scholar 

  30. L. G. Arnaut and R. A. Caldwell, The heat of formation of the benzophenone ketyl radical by time-resolved photoaocustic calorimetry, J. Photochem. Photobiol., A, 1992, 65, 15–20.

    Article  CAS  Google Scholar 

  31. P. J. Wagner, Y. Zhang and A. Puchalski, Rate constant for degenerate hydrogen-atom exchange between alpha-hydroxy radicals and ketones, J. Phys. Chem., 1993, 97, 13368–13374

    Article  CAS  Google Scholar 

  32. P. J. Wagner and A. E. Puchalski, Varying selectivities of triplet ketones toward para-cymene - a measure of the extent of charge-transfer in triplet exciplexes, J. Am. Chem. Soc., 1980, 102, 7138–7140.

    Article  CAS  Google Scholar 

  33. H. Lutz, E. Bréhéret and L. Lindqvist, Effects of solvent and substituents on absorption-spectra of triplet acetophenone ketyl radical studied by nanosecond laser photolysis, J. Phys. Chem., 1973, 77, 1758–1762.

    Article  CAS  Google Scholar 

  34. H. Lutz and L. Lindqvist, Nanosecond laser photolysis of acetophenone in organic solvents, J. Chem. Soc. D, 1971, 493–494

    Google Scholar 

  35. H. Lutz, M. C. Duval, E. Breheret and L. Lindqvist, Solvent effects on acetophenone photoreduction studied by laser photolysis, J. Phys. Chem., 1972, 76, 821–822

    Article  CAS  Google Scholar 

  36. P. J. Wagner, R. J. Truman and J. C. Scaiano, Substituent effects on hydrogen abstraction by phenyl ketone triplets, J. Am. Chem. Soc., 1985, 107, 7093–7097.

    Article  CAS  Google Scholar 

  37. L. G. Arnaut, S. J. Formosinho, A. M. da Silva, Structure efficiency relationships in hydrogen photoabstraction reactions by ketones - thermal-activation versus nuclear tunnelling, J. Photochem., 1984, 27, 185–203.

    Article  CAS  Google Scholar 

  38. R. A. Caldwell and S. C. Gupta, Absence of conformational dependence of Norrish II biradical lifetimes, J. Am. Chem. Soc., 1989, 111, 740–742.

    Article  CAS  Google Scholar 

  39. F. Turecek, 1-Phenylethenol - the enol form of acetophenone - preparation, ionization-energy and the heat of formation in the gas-phase, Tetrahedron Lett., 1986, 27, 4219.

    Article  CAS  Google Scholar 

  40. P. Haspra, A. Sutter and J. Wirz, Acidity of acetophenone enol in aqueos-solution, Angew. Chem., Int. Ed. Engl., 1979, 18, 617–619.

    Article  Google Scholar 

  41. M. Barroso, L. G. Arnaut and S. J. Formosinho, Tunnelling corrections in hydrogen abstractions by excited-state ketones, J. Phys. Org. Chem. 10.1002/poc.1708

  42. P. J. Wagner, R. J. Truman, A. E. Puchalski and R. Wake, Extent of charge-transfer in the photoreduction of phenyl ketones by alkylbenzenes, J. Am. Chem. Soc., 1986, 108, 7727–7738.

    Article  CAS  PubMed  Google Scholar 

  43. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, Marcel Dekker, New York, 2nd edn, 1993.

    Google Scholar 

  44. S. G. Cohen and B. Green, Products and kinetics of photoreduction of acetophenone by amines and alcohols, J. Am. Chem. Soc., 1969, 91, 6824–6829.

    Article  CAS  Google Scholar 

  45. Y. Taniguchi, Y. Nishina and N. Mataga, Laser photolysis studiesonformation of solvated ion radicals in pyrene - N,N-dimethylaniline system in various solvents, Bull. Chem. Soc. Jpn., 1972, 45, 764–769.

    Article  CAS  Google Scholar 

  46. A. Weller, H. Staerk and R. Treichel, Magnetic-field effects on geminate radical-pair recombination, Faraday Discuss. Chem. Soc., 1984, 78, 271–278.

    Article  CAS  Google Scholar 

  47. S. Basu, Exciplex - aromatic complex-formation, J. Photochem., 1978, 9, 539–544.

    Article  CAS  Google Scholar 

  48. N. Orbach and M. Ottolenghi, Solvent induced changes in electronic-structure of a polar intermolecular exciplex, Chem. Phys. Lett., 1975, 35, 175–180.

    Article  CAS  Google Scholar 

  49. H. J. Werner, H. Staerk and A. Weller, Solvent, isotope and magnetic-field effects in geminate recombination of radical ion-pairs, J. Chem. Phys., 1978, 68, 2419–2426.

    Article  CAS  Google Scholar 

  50. R. P. Herbrich and R. Schmidt, Investigation of the pyrene/N,N′-diethylaniline exciplex by photoacoustic calorimetry and fluorescence spectroscopy, J. Photochem. Photobiol., A, 2000, 133, 149–158.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio A. Schaberle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaberle, F.A., Nunes, R.M.D., Barroso, M. et al. Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions. Photochem Photobiol Sci 9, 812–822 (2010). https://doi.org/10.1039/c0pp00025f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00025f

Navigation