Skip to main content
Log in

Role of primary reaction initiated by 254 nm UV light in the degradation of p-nitrophenol attacked by hydroxyl radicals

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The degradation kinetics of p-nitrophenol (p-NP) exposed to 254/185 nm UV light were studied in two modes, i.e., 254 nm UV light intensity enhanced mode and normal mode. It was observed that the extra 254 nm UV light source accelerated the degradation process both in the presence and the absence of oxygen. Considering that hydroxyl radical (·OH) is the dominant factor that causes the degradation of p-NP, the enhanced degradation that occurred in the presence of the extra light source was attributed to the synergistic effect between ·OH attack and the primary reactions initiated by 254 nm UV light. The synergistic effect has been confirmed by 266 nm laser flash photolysis (LFP) experiments. It is demonstrated that the phenoxy radical generated from the photoionization of p-NP is capable of reacting with ·OH. On the basis of these results, it should be noted that UV light could cause more severe damage to p-NP attacked by ·OH in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ye, A. Singh and O. P. Ward, Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics, World J. Microbiol. Biotechnol., 2004, 20, 117–135.

    Article  CAS  Google Scholar 

  2. F. S. G. Einschlag, J. I. Felice and J. M. Triszcz, Kinetics of nitrobenzene and 4-nitrophenol degradation by UV irradiation in the presence of nitrate and nitrite ions, Photochem. Photobiol. Sci., 2009, 8, 953–960.

    Article  Google Scholar 

  3. M. G. Gonzalez, E. Oliveros, M. Wörner and A. M. Braun, Vacuum-ultraviolet photolysis of aqueous reaction systems, J. Photochem. Photobiol., C, 2004, 5, 225–246.

    Article  CAS  Google Scholar 

  4. O. Legrini, E. Oliveros and A. M. Braun, Photochemical processes for water treatment, Chem. Rev., 1993, 93, 671–698.

    Article  CAS  Google Scholar 

  5. M. D. Labas, R. J. Brandi, C. S. Zalazar and A. E. Cassano, Water disinfection with UVC radiation and H2O2. A comparative study, Photochem. Photobiol. Sci., 2009, 8, 670–676.

    Article  CAS  Google Scholar 

  6. A. Alif, P. Boule and J. Lemaire, Photochemical behavior of 4-nitrophenol in aqueous solution, Chemosphere, 1987, 16, 2213–2223.

    Article  CAS  Google Scholar 

  7. M. I. O. Ishag and P. G. N. Moseley, Effects of UV light on dilute aqueous solutions of m- and p-nitrophenol, Tetrahedron, 1977, 33, 3141–3144.

    Article  CAS  Google Scholar 

  8. O. González, C. Sans, S. Esplugas and S. Malato, Application of solar advanced oxidation processes to the degradation of the antibiotic sulfamethoxazole, Photochem. Photobiol. Sci., 2009, 8, 1032–1039.

    Article  Google Scholar 

  9. J. Kiwi, C. Pulgarin and P. Peringer, Effect of Fenton and photo-Fenton reactions on the degradation and biodegradability of 2 and 4-nitrophenols in water treatment, Appl. Catal., B, 1994, 3, 335–350.

    Article  CAS  Google Scholar 

  10. T. Alapi and A. Dombi, Comparative study of the UV and UV/VUV-induced photolysis of phenol in aqueous solution, J. Photochem. Photobiol., A, 2007, 188, 409–418.

    Article  CAS  Google Scholar 

  11. H. Ma, M. Wang, C. Pu, J. Zhang, S. Zhao, S. Yao and J. Xiong, Transient and steady-state photolysis of p-nitroaniline in aqueous solution, J. Hazard. Mater., 2009, 165, 867–873.

    Article  CAS  Google Scholar 

  12. R. Liu, H. Zhao, Z. Zhang, S. Yao, Q. Li and W. Li, Laser flash photolysis of C60-dexamethasone, Acta Phys.-Chim. Sin., 2007, 23, 1127–1130.

    Article  CAS  Google Scholar 

  13. B. Chen, C. Yang and N. K. Goh, Photolysis of nitroaromatic compounds in aqueous solutions, J. Environ. Sci., 2005, 17, 598–604.

    CAS  Google Scholar 

  14. F. Berho and R. Lesclaux, The phenoxy radical: UV spectrum and kinetics of gas-phase reactions with itself and with oxygen, Chem. Phys. Lett., 1997, 279, 289–296.

    Article  CAS  Google Scholar 

  15. J. Feitelson, E. Hayon and A. Treinin, Photoionization of phenols in water. Effects of light intensity, oxygen, pH, and temperature, J. Am. Chem. Soc., 1973, 95, 1025–1029.

    Article  CAS  Google Scholar 

  16. J. L. Roebber, Photolysis of the phenoxy radical in a nitrogen matrix, J. Chem. Phys., 1962, 37, 1974–1981.

    Article  CAS  Google Scholar 

  17. N. Quici, M. I. Litter, A. M. Braun and E. Oliveros, Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids, J. Photochem. Photobiol., A, 2008, 197, 306–312.

    Article  CAS  Google Scholar 

  18. M. Roder, L. Wojnarovits, G. Foldiak, S. S. Emmi, G. Beggiato, M. D’Angelantonio, Addition and elimination kinetics in OH radical induced oxidation of phenol and cresols in acidic and alkaline solutions, Radiat. Phys. Chem., 1999, 54, 475–479.

    Article  CAS  Google Scholar 

  19. T. A. Gadosy, D. Shukla and L. J. Johnston, Generation, characterization, and deprotonation of phenol radical cations, J. Phys. Chem. A, 1999, 103, 8834–8839.

    Article  CAS  Google Scholar 

  20. J. C. Mialocq, J. Sutton and P. Goujon, Picosecond study of electron ejection in aqueous phenol and phenolate solutions, J. Chem. Phys., 1980, 72, 6338–6345.

    Article  CAS  Google Scholar 

  21. O. Brede, R. Hermann and H. Orthner, Charge transfer to a semi-esterified bifunctional phenol, Radiat. Phys. Chem., 1996, 47, 415–417.

    Article  CAS  Google Scholar 

  22. A. J. Elliot, A pulse radiolysis study of the temperature dependence of reactions involving H, OH and eaq in aqueous solutions, Int. J. Radiat. Appl. Instrum., Part C, 1989, 34, 753–758.

    CAS  Google Scholar 

  23. X. Zhong and J. W. Bozzelli, Thermochemical kinetic analysis of the H, OH, HO2, O, and O2 association reactions with cyclopentadienyl radical, J. Phys. Chem. A, 1998, 102, 3537–3555.

    Article  CAS  Google Scholar 

  24. J. C. Mackie, K. R. Doolan and P. F. Nelson, Kinetics of the thermal decomposition of methoxybenzene (anisole), J. Phys. Chem., 1989, 93, 664–670.

    Article  CAS  Google Scholar 

  25. I. W. C. E. Arends, R. Louw and P. Mulder, Kinetic study of the thermolysis of anisole in a hydrogen atmosphere, J. Phys. Chem., 1993, 97, 7914–7925.

    Article  CAS  Google Scholar 

  26. C. W. Cheng, Y. P. Lee and H. A. Witek, Theoretical investigation of molecular properties of the first excited state of the phenoxyl radical, J. Phys. Chem. A, 2008, 112, 2648–2657.

    Article  CAS  Google Scholar 

  27. F. G. Bordwell and J. Cheng, Substituent effects on the stabilities of phenoxyl radicals and the acidities of phenoxyl radical cations, J. Am. Chem. Soc., 1991, 113, 1736–1743.

    Article  CAS  Google Scholar 

  28. G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross and W. Tsang, Critical review of rate constants for reactions of hydrated electrons, chemical kinetic data base for combustion chemistry. Part 3: propane, J. Phys. Chem. Ref. Data, 1988, 17, 513–886.

    Article  CAS  Google Scholar 

  29. H. Zhu, H. Zhao, Z. Zhang, W. Wang and S. Yao, Laser flash photolysis study on antioxidant properties of hydroxycinnamic acid derivatives, Radiat. Environ. Biophys., 2006, 45, 73–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Side Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Ma, H., Wang, M. et al. Role of primary reaction initiated by 254 nm UV light in the degradation of p-nitrophenol attacked by hydroxyl radicals. Photochem Photobiol Sci 9, 710–715 (2010). https://doi.org/10.1039/b9pp00187e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00187e

Navigation