Skip to main content
Log in

Multiphoton-gated cycloreversion reactions of photochromic diarylethene derivatives with low reaction yields upon one-photon visible excitation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cycloreversion processes of three photochromic diarylethene derivatives with extremely low one-photon reaction yields (5.0 × 10−5 to 1.5 × 10−2) were investigated by means of femtosecond and picosecond laser photolysis methods. Femtosecond visible laser photolysis revealed that the excited state of the closed form in these three derivatives decayed into the ground state with 0.7-8 ps time constants and with low cycloreversion yields that were consistent with those obtained by steady-state light irradiation. On the other hand, the cycloreversion reaction was drastically enhanced by picosecond 532 nm laser excitation for all of the three derivatives. From excitation intensity effects of the reaction yield and dynamic behavior, it was found that the successive two-photon absorption process leading to higher excited states opened an efficient cycloreversionchannel, with reaction yields of 0.3-0.5. These results are discussed from the viewpoint of the one-photon inerasable but two-photon erasable photochromic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Photochromism Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, Amsterdam, 1990

    Google Scholar 

  2. Photochromism, ed. C. H. Brown, Wiley-Interscience, New York, 1971.

    Google Scholar 

  3. Molecular Switches, ed. B. L. Feringa, Wiley-VCH, Weinheim, 2001; (b) Thematic issue on ‘Photochromism: Memories and Switches’, Chem. Rev., 2000, 100 (whole of issue 5)

    Google Scholar 

  4. Photo-reactive Materials for Ultra-high Density Optical Memory, ed. M. Irie, Elsevier, Amsterdam, 1994.

    Google Scholar 

  5. S. Kobatake and M. Irie, Annu. Rep. Prog. Chem., Sect. C, 2003, 99, 277.

    Article  CAS  Google Scholar 

  6. M. Irie, Chem. Rev., 2000, 100, 1685

    Article  CAS  PubMed  Google Scholar 

  7. M. Irie and K. Uchida, Bull. Chem. Soc. Jpn., 1998, 71, 985.

    Article  CAS  Google Scholar 

  8. S. Kobatake and M. Irie, Bull. Chem. Soc. Jpn., 2004, 77, 195

    Article  CAS  Google Scholar 

  9. K. Matsuda and M. Irie, Chem. Lett., 2006, 35, 1204

    Article  CAS  Google Scholar 

  10. M. Irie, Bull. Chem. Soc. Jpn., 2008, 81, 917.

    Article  CAS  Google Scholar 

  11. H. G. Heller, Spec. Publ., R. Soc. Chem.: Fine Chem. Electron. Ind., 1986, 60, 120

    CAS  Google Scholar 

  12. J. Whittall, ‘Fulgides and Fulgimides - A Promising Class of Photochrome for Application’, in Applied Photochromic Polymer Systems, ed. C. B. McArdle, Blackie, Glasgow, 1992, ch. 3, p. 80

    Chapter  Google Scholar 

  13. M. Fan, L. Yu and W. Zhao,’ Fulgide Family Compounds: Synthesis, Photochromism, and Applications’, in Organic Photochromic and Thermochromic Compounds, Vol. 1: Main Photochromic Families, ed. J. C. Crano and R. Guglielmetti, Plenum Publishers, New York, 1999, ch. 4, p. 141.

    Google Scholar 

  14. Y. Yokoyama, Chem. Rev., 2000, 100, 1717.

    Article  CAS  PubMed  Google Scholar 

  15. A. Fernandez-Acebes and J.-M. Lehn, Chem. Eur. J., 1999, 5, 3285.

    Article  CAS  Google Scholar 

  16. G. M. Tsivgoulis and J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1995, 34, 1119.

    Article  CAS  Google Scholar 

  17. S. L. Gilat, S. Kawai and J.-M. Lehn, J. Chem. Soc., Chem. Commun., 1993, 1439.

    Google Scholar 

  18. L. N. Lucas, J. J. D. de Jong, J. H. van Esch, R. M. Kellogg and B. L. Feringa, Eur. J. Org. Chem., 2003, 155.

    Google Scholar 

  19. B. L. Feringa, W. F. Jager and B. Delange, Tetrahedron, 1993, 49, 8267.

    Article  CAS  Google Scholar 

  20. B. L. Feringa, J. Org. Chem., 2007, 72, 6635.

    Article  CAS  PubMed  Google Scholar 

  21. A. Peters and N. R. Branda, J. Am. Chem. Soc., 2003, 125, 3404.

    Article  CAS  PubMed  Google Scholar 

  22. A. J. Myles and N. R. Branda, Adv. Funct. Mater., 2002, 12, 167.

    Article  CAS  Google Scholar 

  23. E. Murguly, T. B. Norsten and N. R. Branda, Angew. Chem., Int. Ed., 2001, 40, 1752.

    Article  CAS  Google Scholar 

  24. Q. Luo, B. Chen, M. Wang and H. Tian, Adv. Funct. Mater., 2003, 13, 233

    Article  CAS  Google Scholar 

  25. Y. Yokoyama, H. Shiraishi, Y. Tani, Y. Yokoyama and Y. Yamaguchi, J. Am. Chem. Soc., 2003, 125, 7194

    Article  CAS  PubMed  Google Scholar 

  26. K. Uchida, M. Saito, A. Murakami, S. Nakamura and M. Irie, ChemPhysChem, 2003, 4, 1124.

    Article  CAS  PubMed  Google Scholar 

  27. M. Irie, T. Fukaminato, T. Sasaki, N. Tamai and T. Kawai, Nature, 2002, 420, 759

    Article  CAS  PubMed  Google Scholar 

  28. T. Kawai, T. Sasaki and M. Irie, Chem. Commun., 2001, 711

    Google Scholar 

  29. T. B. Norsten and N. R. Branda, J. Am. Chem. Soc., 2001, 123, 1784.

    Article  CAS  PubMed  Google Scholar 

  30. J. Chauvin, T. Kawai and M. Irie, Jpn. J. Appl. Phys., 2001, 40, 2518

    Article  CAS  Google Scholar 

  31. T. Kawai, N. Fukuda, D. Gröschl, S. Kobatake and M. Irie, Jpn. J. Appl. Phys., 1999, 38, L1194

    Article  CAS  Google Scholar 

  32. E. Kim, Y.-K. Choi, M.-H. Lee, Macromolecules, 1999, 32, 4855.

    Article  CAS  Google Scholar 

  33. S. L. Gilat, S. H. Kawai, J.-M. Lehn, Chem. Eur. J., 1995, 1, 275

    Article  CAS  Google Scholar 

  34. T. Kawai, T. Kunitake and M. Irie, Chem. Lett., 1999, 905

    Google Scholar 

  35. K. Matsuda and M. Irie, J. Am. Chem. Soc., 2000, 122, 7195

    Article  CAS  Google Scholar 

  36. M.-S. Kim, H. Maruyama, T. Kawai and M. Irie, Chem. Mater., 2003, 15, 4539.

    Article  CAS  Google Scholar 

  37. S. Yamamoto, K. Matsuda and M. Irie, Angew. Chem., Int. Ed., 2003, 42, 1636

    Article  CAS  Google Scholar 

  38. T. Kodani, K. Matsuda, T. Yamada, S. Kobatake and M. Irie, J. Am. Chem. Soc., 2000, 122, 9631

    Article  CAS  Google Scholar 

  39. T. Yamaguchi, K. Uchida and M. Irie, J. Am. Chem. Soc., 1997, 119, 6066

    Article  CAS  Google Scholar 

  40. T. Okuyama, Y. Tani, K. Miyake and Y. Yokoyama, J. Org. Chem., 2007, 72, 1634.

    Article  CAS  PubMed  Google Scholar 

  41. M. Morimoto, S. Kobatake and M. Irie, Chem. Rec., 2004, 4, 23

    Article  CAS  PubMed  Google Scholar 

  42. M. Irie, S. Kobatake and M. Horichi, Science, 2001, 291, 1769

    Article  CAS  PubMed  Google Scholar 

  43. M. Irie, T. Lifka, S. Kobatake and N. Kato, J. Am. Chem. Soc., 2000, 122, 4871

    Article  CAS  Google Scholar 

  44. S. Kobatake, T. Yamada, K. Uchida, N. Kato and M. Irie, J. Am. Chem. Soc., 1999, 121, 2380

    Article  CAS  Google Scholar 

  45. S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie, Nature, 2007, 446, 778.

    Article  CAS  PubMed  Google Scholar 

  46. N. Tamai and H. Miyasaka, Chem. Rev., 2000, 100, 1875.

    Article  CAS  PubMed  Google Scholar 

  47. H. D. Ilge, M. Kaschke and D. Khechinashvili, J. Photochem., 1986, 33, 349

    Article  CAS  Google Scholar 

  48. S. Kurita, A. Kashiwagi, Y. Kurita, H. Miyasaka and N. Mataga, Chem. Phys. Lett., 1990, 171, 553.

    Article  CAS  Google Scholar 

  49. F. O. Koller, W. J. Schreier, T. E. Schrader, A. Sieg, S. Malkmus, C. Schulz, S. Dietrich, K. Ruck-Braun, W. Zinth and M. Braun, J. Phys. Chem. A, 2006, 110, 12769

    Article  CAS  PubMed  Google Scholar 

  50. S. Malkmus, F. O. Koller, B. Heinz, W. J. Schreier, T. E. Schrader, W. Zinth, C. Schulz, S. Dietrich, K. Rück-Braun and M. Braun, Chem. Phys. Lett., 2006, 417, 266

    Article  CAS  Google Scholar 

  51. B. Heinz, S. Malkmus, S. Laimgruber, S. Dietrich, C. Schulz, K. Rück-Braun, M. Braun, W. Zinth and P. Gilch, J. Am. Chem. Soc., 2007, 129, 8577.

    Article  CAS  PubMed  Google Scholar 

  52. T. Cordes, S. Malkmus, J. A. DiGirolamo, W. J. Lees, A. Nenov, R. de Vivie-Riedle, M. Braun and W. Zinth, J. Phys. Chem. A, 2008, 112, 13364.

    Article  CAS  PubMed  Google Scholar 

  53. S. C. Martin, N. Singh and S. C. Wallace, J. Phys. Chem., 1996, 100, 8066.

    Article  CAS  Google Scholar 

  54. H. Miyasaka, S. Araki, A. Tabata, T. Nobuto, N. Mataga and M. Irie, Chem. Phys. Lett., 1994, 230, 249

    Article  CAS  Google Scholar 

  55. H. Miyasaka, T. Nobuto, A. Itaya, N. Tamai and M. Irie, Chem. Phys. Lett., 1997, 269, 281

    Article  CAS  Google Scholar 

  56. H. Miyasaka, T. Nobuto, M. Murakami, A. Itaya, N. Tamai and M. Irie, J. Phys. Chem. A, 2002, 106, 8096

    Article  CAS  Google Scholar 

  57. T. Kaieda, S. Kobatake, H. Miyasaka, M. Murakami, N. Iwai, N. Nagata, A. Itaya and M. Irie, J. Am. Chem. Soc., 2002, 124, 2015.

    Article  CAS  PubMed  Google Scholar 

  58. H. Miyasaka, M. Murakami, A. Itaya, D. Guillaumont, S. Nakamura and M. Irie, J. Am. Chem. Soc., 2001, 123, 753

    Article  CAS  PubMed  Google Scholar 

  59. M. Murakami, H. Miyasaka, T. Okada, S. Kobatake and M. Irie, J. Am. Chem. Soc., 2004, 126, 14764.

    Article  CAS  PubMed  Google Scholar 

  60. S. Ryo, Y. Ishibashi, M. Murakami, H. Miyasaka, S. Kobatake and M. Irie, J. Phys. Org. Chem., 2007, 20, 953.

    Article  CAS  Google Scholar 

  61. Y. Ishibashi, K. Tani, H. Miyasaka, S. Kobatake and M. Irie, Chem. Phys. Lett., 2007, 437, 243

    Article  CAS  Google Scholar 

  62. K. Tani, Y. Ishibashi, H. Miyasaka, S. Kobatake and M. Irie, J. Phys. Chem. C, 2008, 112, 11150.

    Article  CAS  Google Scholar 

  63. H. Miyasaka, M. Murakami, T. Okada, Y. Nagata, A. Itaya, S. Kobatake, M. Irie, M., Chem. Phys. Lett., 2003, 371, 40

    Article  CAS  Google Scholar 

  64. K. Uchida, A. Takata, S. Ryo, M. Saito, M. Murakami, Y. Ishibashi, M. Miyasaka and M. Irie, J. Mater. Chem., 2005, 15, 2128

    Article  CAS  Google Scholar 

  65. Y. Ishibashi, M. Mukaida, M. Falkenström, H. Miyasaka, S. Kobatake and M. Irie, Phys. Chem. Chem. Phys., 2009, 11, 2640.

    Article  CAS  PubMed  Google Scholar 

  66. Y. Ishibashi, M. Murakami, H. Miyasaka, S. Kobatake, M. Irie and Y. Yokoyama, J. Phys. Chem. C, 2007, 111, 2730.

    Article  CAS  Google Scholar 

  67. Y. Ishibashi, T. Katayama, C. Ota, S. Kobatake, M. Irie, Y. Yokoyama and H. Miyasaka, New J. Chem., 2009, 33, 1409.

    Article  CAS  Google Scholar 

  68. N. Tamai, T. Saika, T. Shimidzu and M. Irie, J. Phys. Chem., 1996, 100, 4689.

    Article  CAS  Google Scholar 

  69. J. Ern, A. T. Bens, A. Bock, H.-D. Martin and C. Kryschi, J. Lumin., 1998, 76-77, 90

    Article  Google Scholar 

  70. J. Ern, A. T. Bens, H.-D. Martin, S. Mukamel, D. Schmid, S. Tretiak, E. Tsiper and C. Kryschi, Chem. Phys., 1999, 246, 115

    Article  CAS  Google Scholar 

  71. J. Ern, A. T. Bens, H.-D. Martin, S. Mukamel, S. Tretiak, K. Tsyganenko, K. Kuldova, H. P. Trommsdorff and C. Kryschi, J. Phys. Chem. A, 2001, 105, 1741

    Article  CAS  Google Scholar 

  72. J. Ern, A. T. Bens, H.-D. Martin, K. Kuldova, H. P. Trommsdorff and C. Kryschi, J. Phys. Chem. A, 2002, 106, 1654.

    Article  CAS  Google Scholar 

  73. P. R. Hania, R. Telesca, L. N. Lucas, A. Pugzlys, J. van Esch, B. L. Feringa, J. G. Snijders and K. Duppen, J. Phys. Chem. A, 2002, 106, 8498

    Article  CAS  Google Scholar 

  74. P. R. Hania, A. Pugzlys, L. N. Lucas, J. J. D. de Jong, B. L. Feringa, J. H. van Esch, H. T. Jonkman and K. Duppen, J. Phys. Chem. A, 2005, 109, 9437.

    Article  CAS  PubMed  Google Scholar 

  75. S. Shim, T. Joo, S. C. Bae, K. S. Kim and E. Kim, J. Phys. Chem. A, 2003, 107, 8106

    Article  CAS  Google Scholar 

  76. S. Shim, I. Eom, T. Joo, E. Kim and K. S. Kim, J. Phys. Chem. A, 2007, 111, 8910.

    Article  CAS  PubMed  Google Scholar 

  77. H. Miyasaka, T. Moriyama, S. Kotani, R. Muneyasu and A. Itaya, Chem. Phys. Lett., 1994, 225, 315

    Article  CAS  Google Scholar 

  78. H. Miyasaka, T. Moriyama and A. Itaya, J. Phys. Chem., 1996, 100, 12609.

    Article  CAS  Google Scholar 

  79. M. Irie, K. Sakemura, M. Okinaka and K. Uchida, J. Org. Chem., 1995, 60, 8305

    Article  CAS  Google Scholar 

  80. K. Shibata, S. Kobatate and M. Irie, Chem. Lett., 2001, 618

    Google Scholar 

  81. S. Kobatake, Y. Matsumoto and M. Irie, Angew. Chem., Int. Ed., 2005, 44, 2148

    Article  CAS  Google Scholar 

  82. T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura and M. Irie, J. Am. Chem. Soc., 2007, 129, 5932.

    Article  CAS  PubMed  Google Scholar 

  83. A. Seilmeier and W. Kaiser, in Ultrashort laser pulses and applications, ed. W. Kaiser, Springer, Berlin, 1988, p. 279.

  84. B. I. Greene, R. M. Hochstrasser and R. B. Weisman, J. Chem. Phys., 1979, 70, 1247.

    Article  CAS  Google Scholar 

  85. H. Miyasaka, H. Masuhara and N. Mataga, Laser Chem., 1983, 1, 357

    Article  CAS  Google Scholar 

  86. H. Miyasaka, M. Hagihara, T. Okada and N. Mataga, Chem. Phys. Lett., 1992, 188, 259.

    Article  CAS  Google Scholar 

  87. K. Iwata and H. Hamaguchi, J. Phys. Chem. A, 1997, 101, 632.

    Article  CAS  Google Scholar 

  88. L. R. Sutherland, Handbook of Nonlinear Optics (2nd edn), Marcel Dekker, New York, 2003, ch. 13

    Book  Google Scholar 

  89. S. Kershaw, ‘Two-Photon Absorption’ in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, ed. M. G. Kuzyk and C. W. Dirk, Marcel Dekker, New York, 1998, ch. 7.

    Google Scholar 

  90. The output of 1 mJ mm−2 of the picosecond laser pulse at 532 nm with 15 ps fwhm corresponds to I of 1.79 × 1028photons cm−2 s−1. The value of Ng is 6.02 × 1016 molecules cm−3 for 1 × 10−4 M concentration. By using the typical value of the two-photon absorption cross-section, 10−50 cm4 s photon−1 molecule−1, 38 the number of the excited states produced by the above I value is estimated to be 2.87 × 1012 molecules cm−3 or 4.78 × 10−9 M. This estimation indicates that the simultaneous two-photon absorption is rather difficult for the present excitation condition of the picosecond laser pulse.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masahiro Irie or Hiroshi Miyasaka.

Additional information

This paper is part of a themed issue on synthetic and natural photoswitches.

Electronic supplementary information (ESI) available: Excitation intensity dependence of time profiles under femtosecond laser excitation. See DOI: 10.1039/b9pp00116f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishibashi, Y., Okuno, K., Ota, C. et al. Multiphoton-gated cycloreversion reactions of photochromic diarylethene derivatives with low reaction yields upon one-photon visible excitation. Photochem Photobiol Sci 9, 172–180 (2010). https://doi.org/10.1039/b9pp00116f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00116f

Navigation