Skip to main content
Log in

Hydrophilic and photochromic switches based on the opening and closing of [1,3]oxazine rings

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In search of strategies to operate photochromic compounds in aqueous environments, we synthesized two oxazines with a pendant oligo(ethylene glycol) chain each and a co-polymer with multiple oxazine and oligo(ethylene glycol) tails appended to a common macromolecular backbone. The hydrophilic character of the oligo(ethylene glycol) chains imposes solubility in water on two of the three systems. Their laser excitation in water opens the oxazine ring in less than 6 ns to generate zwitterionic isomers able to absorb in the visible region of the electromagnetic spectrum. The photogenerated species revert spontaneously back to the original forms with first-order kinetics. The transition from organic solvents to aqueous environments, however, causes a five-fold decrease in the quantum yield of the photoinduced ring-opening process and elongates the lifetime of the photogenerated isomer from the nanosecond to the microsecond domain. These hydrophilic and photochromic switches can be interconverted hundreds of times between their two states with no sign of degradation in water. As a result, our structural design for the realization of water-soluble photochromic compounds can lead to the development of viable strategies to modulate the structures and functions of biomolecules with microsecond switching times and excellent fatigue resistances under the influence of optical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and References

  1. G. H. Dorion and A. F. Wiebe, Photochromism, Focal Press, New York, 1970.

    Google Scholar 

  2. Photochromism, ed. G. H. Brown, Wiley, New York, 1971.

    Google Scholar 

  3. Organic Photochromes, ed. A. V. El’tsov, Consultants Bureau, New York, 1990.

    Google Scholar 

  4. Photochromism: Molecules and Systems, ed. H. Bouas-Laurent and H. Dürr, Elsevier, Amsterdam, 1990.

    Google Scholar 

  5. Organic Photochromic and Thermochromic Compounds, ed. J. C. Crano and R. Guglielmetti, Plenum Press, New York, vol. 1, 1999.

    Google Scholar 

  6. Applied Photochromic Polymer Systems, ed. C. B. McArdle, Blackie, Glasgow, 1992.

    Google Scholar 

  7. Photo-Reactive Materials for Ultrahigh Density Optical Memory, ed. M. Irie, Elsevier, Amsterdam, 1994

    Google Scholar 

  8. Chem. Rev., 2000, 100, pp. 1683–1890, issue on “Photochromism: Memories and Switches”, ed. M. Irie.

  9. F. M. Raymo and M. Tomasulo, Chem.-Eur. J., 2006, 12, 3186–3193.

    Article  CAS  Google Scholar 

  10. F. M. Raymo, Angew. Chem., Int. Ed., 2006, 45, 5249–5251.

    Article  CAS  Google Scholar 

  11. J. Cusido, E. Deniz and F. M. Raymo, Eur. J. Org. Chem., 2009, 2031–2045.

    Google Scholar 

  12. I. Yildiz, E. Deniz and F. M. Raymo, Chem. Soc. Rev., 2009, 38, 1859–1867.

    Article  CAS  Google Scholar 

  13. au]2_I. Willner and B. Willner, in Bioorganic Photochemistry, ed. H. Morrison, Wiley, New York, 1993, vol. 2, pp. 1–110.

  14. I. Willner and S. Rubin, Angew. Chem., Int. Ed. Engl., 1996, 35, 367–385.

    Article  CAS  Google Scholar 

  15. I. Willner, Acc. Chem. Res., 1997, 30, 347–356.

    Article  CAS  Google Scholar 

  16. S. W. Hell, Nat. Biotechnol., 2003, 21, 1347–1355.

    Article  CAS  Google Scholar 

  17. S. W. Hell, M. Dyba and S. Jakobs, Curr. Opin. Neurobiol., 2004, 14, 599–609.

    Article  CAS  Google Scholar 

  18. S. W. Hell and L. Kastrup, Nachr. Chem., 2007, 55, 47–50.

    Article  CAS  Google Scholar 

  19. S. W. Hell, Science, 2007, 316, 1153–1158.

    Article  CAS  Google Scholar 

  20. S. W. Hell, Nat. Methods, 2009, 6, 24–32.

    Article  CAS  Google Scholar 

  21. P. Gorostiza and E. Y. Isacoff, Science, 2008, 322, 395–399.

    Article  CAS  Google Scholar 

  22. C. Dohno, S.-N. Uno and K. Nakatani, J. Am. Chem. Soc., 2007, 129, 11898–11899.

    Article  CAS  Google Scholar 

  23. J. Andersson, S. Li, P. Lincoln and J. Andréasson, J. Am. Chem. Soc., 2008, 130, 11836–11837.

    Article  CAS  Google Scholar 

  24. (a)R. C. Bertelson, in ref. 1, pp. 45-431; (b) R. C. Bertelson, in ref. 5, pp. 11-83.

  25. A. S. Kholmanskii and K. M. Dyumanev, Russ. Chem. Rev., 1987, 56, 136–151.

    Article  Google Scholar 

  26. R. Guglielmetti, in ref. 4, pp. 314-466 and pp. 855-878.

  27. N. Tamai and H. Miyasaka, Chem. Rev., 2000, 100, 1875–1890.

    Article  CAS  Google Scholar 

  28. V. I. Minkin, Chem. Rev., 2004, 104, 2751–2776.

    Article  CAS  Google Scholar 

  29. M. Tomasulo, S. Sortino, A. J. P. White and F. M. Raymo, J. Org. Chem., 2005, 70, 8180–8189

    Article  CAS  Google Scholar 

  30. M. Tomasulo, S. Sortino and F. M. Raymo, Org. Lett., 2005, 7, 1109–1112

    Article  CAS  Google Scholar 

  31. M. Tomasulo, S. Sortino and F. M. Raymo, Asian Chem. Lett., 2007, 11, 219–222

    Google Scholar 

  32. M. Tomasulo, S. Sortino and F. M. Raymo, Adv. Mater., 2008, 20, 832–835

    Article  CAS  Google Scholar 

  33. M. Tomasulo, S. Sortino and F. M. Raymo, J. Photochem. Photobiol., A, 2008, 200, 44–49

    Article  CAS  Google Scholar 

  34. M. Tomasulo, S. Sortino and F. M. Raymo, J. Org. Chem., 2008, 73, 118–126

    Article  CAS  Google Scholar 

  35. E. Deniz, M. Tomasulo, S. Sortino and F. M. Raymo, J. Phys. Chem. C, 2009, 113, 8491–8497

    Article  CAS  Google Scholar 

  36. M. Åxman Petersen, E. Deniz, M. Brøndsted Nielsen, S. Sortino and F. M. Raymo, Eur. J. Org. Chem., 2009, 4333–4339; (i) M. Tomasulo, E. Deniz, T. Benelli, S. Sortino and F. M. Raymo, Adv. Funct. Mater. DOI: 10.1002/adfm.200901364.

    Google Scholar 

  37. M. Tomasulo, E. Deniz, R. J. Alvarado and F. M. Raymo, J. Phys. Chem. C, 2008, 112, 8038–8045.

    Article  CAS  Google Scholar 

  38. B. S. Lele and M. G. Kulkarni, J. Appl. Polym. Sci., 1998, 70, 883–890.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salvatore Sortino or Françisco M. Raymo.

Additional information

This paper is part of a themed issue on synthetic and natural photoswitches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomasulo, M., Deniz, E., Sortino, S. et al. Hydrophilic and photochromic switches based on the opening and closing of [1,3]oxazine rings. Photochem Photobiol Sci 9, 136–140 (2010). https://doi.org/10.1039/b9pp00114j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00114j

Navigation