Skip to main content
Log in

Formation of photoresponsive gold nanoparticle networks via click chemistry

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

To tailor highly-functionalized gold nanoparticle (GNP) networks, we investigated the GNP network formation with functionalized spacer groupvia click chemistry. This is based on its high reactivity and mild reaction conditions. The feature of this protocol is the easy approach to versatile GNP functionalization on the basis of the excellent accessibility and good stability of functional dialkyne derivatives. We achieved the successful formation of GNP networks by reacting azide-appended GNPs and various dialkyne derivatives, supported by infrared absorption spectroscopy and transmission electron microscopy analyses. These GNP networks readily showed the unique physical properties similar to those of classical GNP networks prepared by ligand exchange reaction of bidentate functional spacers. Typically, the GNP network with the azobenzene unit as a functional spacer (GNP3) showed reversible photoinduced formation of three-dimensional aggregates followed by its isomerization in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds, Plenum Press, New York, 1999.

    Google Scholar 

  2. H. Duerr and H. Bouas-Laurent, Photochromism: Molecules and Systems, Elsevier, Amsterdam, 2003.

    Google Scholar 

  3. T. Kawai, Y. Nakashima and M. Irie, Adv. Mater., 2005, 17, 309.

    Article  CAS  Google Scholar 

  4. M. Irie, T. Fukaminato, T. Sasaki, N. Tamai and T. Kawai, Nature, 2002, 420, 759.

    Article  CAS  PubMed  Google Scholar 

  5. K. Matsuda and M. Irie, J. Am. Chem. Soc., 2000, 122, 8309.

    Article  CAS  Google Scholar 

  6. Molecular Switches, ed. B. L. Feringa, Wiley-VCH, Weinheim, Germany, 2001.

    Google Scholar 

  7. Y. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145.

    Article  CAS  PubMed  Google Scholar 

  8. M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. Barrett and T. Ikeda, Angew. Chem., Int. Ed., 2008, 47, 4986.

    Article  CAS  Google Scholar 

  9. S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie, Nature, 2007, 446, 778.

    Article  CAS  PubMed  Google Scholar 

  10. H. Koshima, N. Ojima and H. Uchimoto, J. Am. Chem. Soc., 2009, 131, 6890.

    Article  CAS  PubMed  Google Scholar 

  11. S. Lin, M. Li, E. Dujardin, C. Girard and S. Mann, Adv. Mater., 2005, 17, 2553.

    Article  CAS  Google Scholar 

  12. T. Vossmeyer, C. Stolte, M. Ijeh, A. Kornowski and H. Weller, Adv. Funct. Mater., 2008, 18, 1611.

    Article  CAS  Google Scholar 

  13. G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap and R. Pasqualini, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. I. Hussain, Z. Wang, A. I. Cooper and M. Brust, Langmuir, 2006, 22, 2938.

    Article  CAS  PubMed  Google Scholar 

  15. Y. X. Zhang and H. C. Zeng, Langmuir, 2008, 24, 3740.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Joseph, A. Peić, X. Chen, J. Michl, T. Vossmeyer and A. Yasuda, J. Phys. Chem. C, 2007, 111, 12855.

    Article  CAS  Google Scholar 

  17. L. Bernard, Y. Kamdzhilov, M. Calame, S. J. Van Der Molten, J. Liao and C. Schönenberger, J. Phys. Chem. C, 2007, 111, 18445.

    Article  CAS  Google Scholar 

  18. W. Huang, H. Tanaka and T. Ogawa, J. Phys. Chem. C, 2008, 112, 11513.

    Article  CAS  Google Scholar 

  19. W. Huang, G. Masuda, S. Maeda, H. Tanaka, T. Hino and T. Ogawa, Inorg. Chem., 2008, 47, 468.

    Article  CAS  PubMed  Google Scholar 

  20. S. Taniguchi, M. Minamoto, M. M. Matsushita, T. Sugawara, Y. Kawada and D. Bethell, J. Mater. Chem., 2006, 16, 3459.

    Article  CAS  Google Scholar 

  21. P. Nickels, M. M. Matsushita, M. Minamoto, S. Komiyama and T. Sugawara, Small, 2008, 4, 471.

    Article  CAS  PubMed  Google Scholar 

  22. D. S. Sidhaye, S. Kashyap, M. Sastry, S. Hotha and B. L. V. Prasad, Langmuir, 2005, 21, 7979.

    Article  CAS  PubMed  Google Scholar 

  23. K. Matsuda, H. Yamaguchi, T. Sakano, M. Ikeda, N. Tanifuji and M. Irie, J. Phys. Chem. C, 2008, 112, 17005.

    Article  CAS  Google Scholar 

  24. S. J. Van Der Molten, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, C. Schönenberger, Nano Lett., 2009, 9, 76.

    Article  CAS  Google Scholar 

  25. H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004.

    Article  CAS  Google Scholar 

  26. J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 2007, 36, 1249.

    Article  CAS  PubMed  Google Scholar 

  27. W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 2007, 28, 15.

    Article  CAS  Google Scholar 

  28. S-Y. Ku, K-T. Wong and A. J. Bard, J. Am. Chem. Soc., 2008, 130, 2392.

    Article  CAS  PubMed  Google Scholar 

  29. J. L. Brennan, N. S. Hatzakis, T. R. Tshikhudo, N. Dirvianskyte, V. Razumas, S. Patkar, J. Vind, A. Svendsen, R. J. M. Nolte, A. E. Rowan and M. Brust, Bioconjugate Chem., 2006, 17, 1373.

    Article  CAS  Google Scholar 

  30. M. Fischler, A. Sologubenko, J. Mayer, G. Clever, G. Burley, J. Gierlich, T. Carell and U. Simon, Chem. Commun., 2008, 169.

    Google Scholar 

  31. D. A. Fleming, C. J. Thode and M. E. Williams, Chem. Mater., 2006, 18, 2327.

    Article  CAS  Google Scholar 

  32. M. Brust, M. Walker, D. Bethell, D. J. Schriffin and R. Whyman, J. Chem. Soc., Chem. Commun., 1994, 801.

    Google Scholar 

  33. D. R. Rutherford, J. K. Stille, C. M. Elliott and V. R. Reichert, Macromolecules, 1992, 25, 2294.

    Article  CAS  Google Scholar 

  34. L. Liu, Z. Liu, W. Xu, H. Xu, D. Zhang and D. Zhu, Tetrahedron, 2005, 61, 3813.

    Article  CAS  Google Scholar 

  35. O. Lavasre, I. Illitchev, G. Jegou and P. H. Dixneuf, J. Am. Chem. Soc., 2002, 124, 5278.

    Article  CAS  Google Scholar 

  36. The spectroscopic characterization of the GNP network is difficult owing to its insolubility in common organic solvents, and the small particle size to observe the characteristic plasmon band: T. Shimizu, T. Teranishi, S. Hasegawa and M. Miyake, J. Phys. Chem. B, 2003, 107, 2719.

    Article  CAS  Google Scholar 

  37. B. Sieczkowska, M. Millaruelo, M. Messerschmidt and B. Voit, Macromolecules, 2007, 40, 2361.

    Article  CAS  Google Scholar 

  38. Controlling the plasmon band of GNP by designing metastable conditions (diameter of the particles, coverage ratio of the photochromic unit on the GNP, and so on) has been reported: R. Klajn, P. J. Wesson, K. J. M. Bishop and B. A. Grzybowski, Angew. Chem., Int. Ed., 2009, 48, 7035.

    Article  CAS  Google Scholar 

  39. Estimation of quantum yields for isomerization of the azobenzene unit in the GNP3 network was difficult owing to its insolubility in common organic solvents. Quantum yields of isomerization of monodentate azobenzene thiol-GNP composites have been estimated, indicating that the quantum yields decreased after modification of GNP: J. Zhang, J. K. Whitesell and M. A. Fox, Chem. Mater., 2001, 13, 2323.

    Article  CAS  Google Scholar 

  40. M. Suda, N. Kameyama, M. Suzuki, N. Kawamura and Y. Einaga, Angew. Chem., Int. Ed., 2008, 47, 160.

    Article  CAS  Google Scholar 

  41. M. Suda, N. Kameyama, A. Ikegami and Y. Einaga, J. Am. Chem. Soc., 2009, 131, 865.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of a themed issue on synthetic and natural photoswitches.

Electronic supplementary information (ESI) available: Characterization of N3-GNP and IR spctra of GNP1 and GNP2. See DOI: 10.1039/b9pp00108e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimoto, A., Iwasaki, K. & Abe, J. Formation of photoresponsive gold nanoparticle networks via click chemistry. Photochem Photobiol Sci 9, 152–156 (2010). https://doi.org/10.1039/b9pp00108e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00108e

Navigation