Skip to main content
Log in

Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A quantitative evaluation of the light emerging from intact petals of Rhododendron indicum flowers of different colours was performed. Reflectance and fluorescence emission were analyzed in detail. The fluorescence quantum yield of petals was determined on entire flowers. The obtained values varied from 7.6 × 10−5 to 6.3 × 10−4 for the emission in the blue region of the electromagnetic spectrum and from 2.4 × 10−5 to 1.9 × 10−4 for the emission in the red one. The fluorescence emission that resulted was negligible compared to the light reflected by the petals, so it was concluded that in this case only reflectance signals should be relevant in biosignal communication with pollinators. In addition, a quantitative estimation of the relative amount of photons absorbed by eye photoreceptors was achieved. Quantum catches were calculated for humans, for honeybees and for a species of bird. Contrasts to background values were also estimated in relation to the ability to detect flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Φ f :

Fluorescence quantum yield

Qi:

Quantum catch for photoreceptor i

Ci:

Contrast to background for the photoreceptor i

L:

Long wavelength

M:

Medium wavelength

S:

Short wavelength

VS:

Very short wavelength

λ:

Wavelength

dλ:

Differential of wavelength

Si:

Photoreceptor spectral sensitivity

R(λ):

Reflectance spectrum of petals

Rb(λ):

Reflectance spectrum of background

I(λ):

Quantum-based illumination spectrum

Pi:

Photons absorbed by photoreceptor i from the flower

Pib:

Photons absorbed by the photoreceptor i from the background

J0:

Integrated scattered light from the blank

J:

Integrated scattered light from the petals

I0:

Scattered light intensity from the blank

I:

Scattered light intensity from the petals

Jf:

Emission spectrum from the petals

Anth:

Anthocyanins

D65:

Standard noon daylight illuminant

References

  1. A. Iriel, M. G. Lagorio, Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of Anthocyanins in petals using a reflectance-based method, Photochem. Photobiol. Sci., 2009, 8, 337–344.

    Article  CAS  Google Scholar 

  2. F. Gandía-Herrero, J. Escribano, F. García Carmona, Betaxanthins as pigments responsible for visible fluorescence in flowers, Planta, 2005, 222, 586–593.

    Article  Google Scholar 

  3. F. Gandía-Herrero, F. García Carmona, J. Escribano, Botany: Floral fluorescent effect, Nature, 2005, 437, 334.

    Article  Google Scholar 

  4. H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, B. J. Blover, Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators, Science, 2009, 323, 130–133.

    Article  CAS  Google Scholar 

  5. M. Vorobyev, J. Marshall, D. Osorio, N. Hempel de Ibarra, R. Menzel, Colorful Objects Through Animal Eyes, Color Res. Appl., 2001, 26, S214–S217.

    Article  Google Scholar 

  6. L. Chittka, and P. G. Kevan, in Practical Pollination Biology, ed. A. Dafni, P. G. Kevan and B. C. Husband, Enviroquest Ltd., Cambridge, 2005, ch. 4, pp 157–196.

  7. A. Ono, I. Dohzono, T. Sugawara, Bumblebee pollination and reproductive biology of Rhododendron semibarbatum (Ericaceae), J. Plant Res., 2008, 121, 319–327.

    Article  Google Scholar 

  8. E. E. Leppik, Evolutionary interaction between rhododendrons, pollinating insects and rest fungi, Q. Bull. Am. Rhododendron Soc., 1974, 28, 2.

    Google Scholar 

  9. K. MacKinnon, G. Hatta, H. Halim, A. Mangalik, in The Ecology of Indonesia Series, The Ecology of Kalimantan, Indonesian Borneo, ed. S. Johannensen and K. McVittie, Periplus Editions Ltd, Hong Kong, 1996, vol. 3, ch. 7, pp 327.

  10. M. Strange, in A Photographic Guide to the Birds of Southeast Asia: Including the Phillipines & Borneo, Periplus Edition Ltd, New Jersey, 2000, pp 284.

    Google Scholar 

  11. M. G. Lagorio, L. E. Dicelio, M. I. Litter, E. San Román, Modeling of Fluorescence Quantum Yields of Supported dyes. Aluminium carboxyphthalocyanine on cellulose, J. Chem. Soc., Faraday Trans., 1998, 94, 419–425.

    Article  Google Scholar 

  12. M. G. Lagorio, E. San Román, A. Zeug, J. Zimmermann, B. Roeder, Photophysics on surfaces: Absorption and luminescence properties of Pheophorbide-a on cellulose, Phys. Chem. Chem. Phys., 2001, 3, 1524–1529.

    Article  Google Scholar 

  13. M. S. Wrighton, D. S. Ginley, D. L. Morse, A Technique for the Determination of Absolute Emission Quantum Yields of Powdered Samples, J. Phys. Chem., 1974, 78, 2229–2233.

    Article  CAS  Google Scholar 

  14. Y. S. Liu, P. de Mayo, W. R. Ware, Photophysics of Polycyclic Aromatic Hydrocarbons Adsorbed on Silica Gel Surfaces. 3. Fluorescence Quantum Yields and Radiative Decay Rate Constants Derived from Lifetime Distributions, J. Phys. Chem., 1993, 97, 5995–6001.

    Article  CAS  Google Scholar 

  15. M. Mirenda, M. G. Lagorio, E. San Román, Photophysics on surfaces: Determination of Absolute Fluorescence Quantum Yields from Reflectance Spectra, Langmuir, 2004, 20, 3690–3697.

    Article  CAS  Google Scholar 

  16. A. D. Briscoe, L. Chittka, The evolution of color vision in insects, Annu. Rev. Entomol., 2001, 46, 471–510.

    Article  CAS  Google Scholar 

  17. V. C. Smith, and J. Pokorny, in The Science of Color, ed. S. K. Shevell, Elsevier, Oxford, 2nd edn, 2003, ch. 3, pp 117–120.

  18. M. Vorobyev, D. Osorio, Receptor noise as a determinant of colour thresholds, Proc. R. Soc. London, Ser. B, 1998, 265, 351–358.

    Article  CAS  Google Scholar 

  19. E. J. Maier, Ultraviolet vision in a passeriform bird: from receptor spectral sensitivity to overall sensitivity in Leiothrix lutea, Vision Res., 1994, 34, 1415–1418.

    Article  CAS  Google Scholar 

  20. A. Kelber, M. Vorobyev, D. Osorio, Animal Colour vision-behavioural tests and physiological concepts, Biol. Rev., 2003, 78, 81–118.

    Article  Google Scholar 

  21. G. Wyszecki, and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulas, John Wiley & Sons, New York, 2nd edn, 2000, pp 145.

    Google Scholar 

  22. H. E. Smithson, Sensory, computational and cognitive components of human colour constancy, Philos. Trans. R. Soc. London, Ser. B, 2005, 360, 1329–1346.

    Article  CAS  Google Scholar 

  23. W. Wendlandt, and H. Hecht, Reflectance Spectroscopy, ed. P. J. Elving and I. M. Kolthoff, Interscience Publishers, New York, 1966

  24. H. B. Rodriguez, M. G. Lagorio, E. San Román, Rose Bengal adsorbed on microgranular cellulose. Evidence of fluorescent dimers, Photochem. Photobiol. Sci., 2004, 3, 674–680.

    Article  CAS  Google Scholar 

  25. A. Iriel, M. G. Lagorio, L. E. Dicelio, E. San Román, Photophysics of Supported Dyes: Phthalocyanine on Silanized Silica, Phys. Chem. Chem. Phys., 2002, 4, 224–231.

    Article  CAS  Google Scholar 

  26. H. B. Rodriguez, A. Iriel, E. San Román, Energy transfer among dyes on particulate solids, Photochem. Photobiol., 2006, 82, 200–207.

    Article  CAS  Google Scholar 

  27. V. V. Roshchina, and E. V. Melnikova, in Principles and Practices in plant ecology: allelochemical interactions, ed. K. M. Inderjit, M. Dakshini and C. L. Foy, CRC press, Boca Raton, 1999, ch. 8.

  28. E. Ono, M. Fukuchi-Mizutani, N. Nakamura, Y. Fukui, K. Yonekura-Sakakibara, M. Yamaguchi, T. Nakayama, T. Tanaka, T. Kusumi, Y. Tanaka, Yellow fowers generated by expression of the aurone biosynthetic pathway, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 11075–11080.

    Article  CAS  Google Scholar 

  29. F. Gandía Herrero, M. Jiménez-Atiénzar, J. Cabanes, J. Escribano, F. García, Carmona, Fluorescence Detection of Tyrosinase Activity on Dopamine-Betaxanthin Purified from Portulaca oleracea (Common Purslane) Flowers, J. Agric. Food Chem., 2009, 57, 2523–2528.

    Article  Google Scholar 

  30. M. V. Matz, N. J. Marshall, M. Vorobyev, Simposium-in-Print: Green Fluorescent Protein and Homologs Are Corals Colorful?, Photochem. Photobiol., 2006, 82, 345–350.

    Article  CAS  Google Scholar 

  31. L. Chittka, N. E. Raine, Recognition of flowers by pollinators, Curr. Opin. Plant Biol., 2006, 9, 428–435.

    Article  Google Scholar 

  32. A. G. Dyer, H. M. Whitney, S. E. J. Arnold, B. J. Glower, L. Chittka, Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour, Arthropod-Plant Interactions, 2007, 1, 45–55.

    Article  Google Scholar 

  33. M. A. Rodriguez-Gironés, L. Santamaría, Why are so many bird flowers red?, PLoS Biol., 2004, 2, 1515–1519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Gabriela Lagorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iriel, A., Lagorio, M.G. Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling. Photochem Photobiol Sci 9, 342–348 (2010). https://doi.org/10.1039/b9pp00104b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00104b

Navigation