Skip to main content
Log in

Excited-state intramolecular proton transfer on 2-(2′-hydroxy-4′-R-phenyl)benzothiazole nanoparticles and fluorescence wavelength depending on substituent and temperature

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fluorescence emission properties of 2-(2′-hydroxy-4′-R-phenyl)benzothiazole (HBT-R) nanoparticles with different substituents (R =-COOH,-H,-CH3,-OH, and-OCH3) were investigated using spectroscopic and theoretical methods. HBT-Rs displayed dual enol and keto (excited-state intramolecular proton transfer (ESIPT)) emissions in nonpolar solvents. The spectral change of their ESIPT emissions was affected differently by the electron donating (or withdrawing) power of the substituents; a bathochromic shift for the electron donating group and a hypsochromic shift in electron withdrawing group. In addition, the changes in energy levels calculated by the ab initio method were consistent with the spectral shifts of HBT-R in solution. We prepared aggregated HBT-R nanoparticles using a simple reprecipitation process in tetrahydrofuran-water solvents. The ESIPT emission of aggregated HBT-R nanoparticles was strongly enhanced (over 45 times) compared to those of monomer HBT-Rs in toluene, as markedly shifted ESIPT emissions are observed at longer wavelength without any quenching by self-absorption. Aggregated HBT-R nanoparticles showed longer lifetimes than those of monomer molecules. The temperature effect on the aqueous dispersion of the aggregated HBT-R nanoparticles was also explored. It shows a fluorescent ratiometric change in a range of temperature from 7 to 65 °C. A mechanism of a temperature-dependent equilibrium between the nanoparticles and the solvated enols is proposed for the emission color change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Borisov and O. S. Wolfbeis, Optical biosensors, Chem. Rev., 2008, 108, 423–461.

    Article  CAS  PubMed  Google Scholar 

  2. C. McDonagh, C. S. Burke, B. D. MacCraith, Optical chemical sensors, Chem. Rev., 2008, 108, 400–422.

    Article  CAS  PubMed  Google Scholar 

  3. A. Hagfeldt, M. Grätzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 1995, 95, 49–68.

    Article  CAS  Google Scholar 

  4. M. C. Schlamp, X. Peng and A. P. Alivisatos, Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer, J. Appl. Phys., 1997, 82, 5837–5842.

    Article  CAS  Google Scholar 

  5. H.-B. Fu, J.-N. Yao, Size Effects on the Optical properties of organic nanoparticles, J. Am. Chem. Soc., 2001, 123, 1434.

    Article  CAS  Google Scholar 

  6. D. Xiao, L. Xi, W. Yang, H. Fu, Z. Shuai, Y. Fang and J. Yao, Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles, J. Am. Chem. Soc., 2003, 125, 6740–6745.

    Article  CAS  PubMed  Google Scholar 

  7. M. R. Eftink, Fluorescence Quenching: Theory and Applications, in Topic in Fluorescence Spectroscopy, ed. J. R. Lakowicz, Plenum Press, New York, 1991, vol. 2, chapter 2.

  8. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, Singapore, 3rd ed., 2006, chapter 8.

    Book  Google Scholar 

  9. B.-K. An, S.-K. Kwon, S.-D. Jung and S. Y. Park, Enhanced emission and its switching in fluorescent organic nanoparticles, J. Am. Chem. Soc., 2002, 124, 14410–14415.

    Article  CAS  PubMed  Google Scholar 

  10. S. Li, L. He, F. Xiong, Y. Li and G. Yang, Enhanced fluorescent emission of organic nanoparticles of an intramolecular proton transfer compound and spontaneous formation of one-dimensional nanostructures, J. Phys. Chem. B, 2004, 108, 10887–10892.

    Article  CAS  Google Scholar 

  11. R. Deans, J. Kim, M. R. Machacek and T. M. Swager, A poly(p-phenyleneethynylene) with a highly emissive aggregated phase, J. Am. Chem. Soc., 2000, 122, 8565–8566.

    Article  CAS  Google Scholar 

  12. M. Livitus, K. Schmieder, H. Ricks, K. D. Shimizu, U. H. F. Bunz, M. A. Garcia-Garibay, Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 1. Rotationally interrupted conjugation in the excited states of 1,4-bis(phenylethynyl)benzene, J. Am. Chem. Soc., 2001, 123, 4259–4265.

    Article  CAS  Google Scholar 

  13. J. Seo and S. Y. Park, Excited-state intramolecular proton transfer (ESIPT) in fluorescent organic nanoparticles, Nonlinear Opt., Quantum Opt., 2005, 34, 101–106.

    CAS  Google Scholar 

  14. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001, 1740–1741.

    Google Scholar 

  15. Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, L. Ji, Z. Zhu, C. K. W. Jim, G. Yu, Q. Li, Z. Li, Y. Liu, J. Qin and B. Z. Tang, Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations: AIE and AIEE effects, Chem. Commun., 2007, 70–72.

    Google Scholar 

  16. L. G. Arnaut and S. J. Formosinho, Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions, J. Photochem. Photobiol., A, 1993, 75, 1–20.

    Article  CAS  Google Scholar 

  17. S. J. Formosinho and L. G. Arnaut, Excited-state proton transfer reactions II. Intramolecular reactions, J. Photochem. Photobiol., A, 1993, 75, 21–48.

    Article  CAS  Google Scholar 

  18. D. W. Cho and M. Yoon, Photophysical properties of hydroxyanthraquinone derivatives (HQAs)-doped SiO2, SiO2–Al2O3 and Al2O3 matrices, J. Photochem. Photobiol., A, 2006, 181, 414–420.

    Article  CAS  Google Scholar 

  19. D. W. Cho, S. H. Kim, M. Yoon and S. C. Jeoung, Transient Raman spectroscopic studies on the excited-state intramolecular reverse proton transfer in 1-hydroxyanthraquinone, Chem. Phys. Lett., 2004, 391, 314–320.

    Article  CAS  Google Scholar 

  20. J. R. Choi, S. C. Jeoung and D. W. Cho, Two-photon-induced excited-state intramolecular proton transfer process in 1-hydroxyanthraquinone, Chem. Phys. Lett., 2004, 385, 384–388.

    Article  CAS  Google Scholar 

  21. J. Catalán, F. Fabero, M. S. Guijarro, R. M. Claramunt, M. D. Santa Maria, M. C. Foces-Foces, F. H. Cano, J. Elguero and R. Sastre, Photoinduced intramolecular proton transfer as the mechanism of ultraviolet stabilizers: a reappraisal, J. Am. Chem. Soc., 1990, 112, 747–759.

    Article  Google Scholar 

  22. D. Kuila, G. Kwakovszky, M. A. Murphy, R. Vicare, M. H. Rood, K. A. Fritch and J. R. Fritch, Tris(hydroxyphenyl)ethane benzotriazole: A copolymerizable UV light stabilizer, Chem. Mater., 1999, 11, 109–116.

    Article  CAS  Google Scholar 

  23. B. M. Uzhinov and S. I. Druzhinin, Excited state proton transfer dye lasers, Russ. Chem. Rev., 1998, 67, 123–136.

    Article  Google Scholar 

  24. R. M. Tarkka, X. Zhang and S. A. Jenekhe, Electrically generated intramolecular proton transfer: Electroluminescence and stimulated emission from polymers, J. Am. Chem. Soc., 1996, 118, 9438–9439.

    Article  CAS  Google Scholar 

  25. P.-T. Chou, M. L. Martinez and J. H. Clements, Reversal of excitation behavior of proton-transfer vs. charge-transfer by dielectric perturbation of electronic manifolds, J. Phys. Chem., 1993, 97, 2618–2622.

    Article  CAS  Google Scholar 

  26. M. M. Henary, Y.-G. Wu and C. J. Fahrni, Zinc(II)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer, Chem.–Eur. J., 2004, 10, 3015–3025.

    Article  CAS  PubMed  Google Scholar 

  27. M. G. Holler, L. F. Campo, A. Brandelli and V. Stefani, Synthesis and spectroscopic characterisation of 2-(2′-hydroxyphenyl)benzazole isothiocyanates as new fluorescent probes for proteins, J. Photochem. Photobiol., A, 2002, 149, 217–225.

    Article  CAS  Google Scholar 

  28. A. S. Klymchenko and A. P. Demchenko, Electrochromic modulation of excited-state intramolecular proton transfer: The new principle in design of fluorescence sensors, J. Am. Chem. Soc., 2002, 124, 12372–12379.

    Article  CAS  PubMed  Google Scholar 

  29. K. Tanaka, T. Kumagai, H. Aoki, M. Deguchi and S. Iwata, Application of 2-(3,5,6-Trifluoro-2-hydroxy-4-methoxyphenyl)benzoxazole and -benzothiazole to fluorescent probes sensing pH and metal cations, J. Org. Chem., 2001, 66, 7328–7333.

    Article  CAS  PubMed  Google Scholar 

  30. A. Ohshima, A. Momotake and T. Arai, A new fluorescent metal sensor with two binding moieties, Tetrahedron Lett., 2004, 45, 9377–9381.

    Article  CAS  Google Scholar 

  31. A. Sytnik and J. C. Delvalle, Steady-state and time-resolved study of the proton-transfer fluorescence of 4-hydroxy-5-azaphenanthrene in model solvents and in complexes with human serum albumin, J. Phys. Chem., 1995, 99, 13028–13032.

    Article  CAS  Google Scholar 

  32. G. F. Kirkbright, D. E. M. Spillane, K. Anthony, R. G. Brown, J. D. Hepworth, K. W. Hodgson and M. A. West, Determination of the fluorescence quantum yields of some 2-substituted benzothiazoles, Anal. Chem., 1984, 56, 1644–1647.

    Article  CAS  Google Scholar 

  33. D. L. Williams and A. Heller, Intramolecular proton transfer reactions in excited fluorescent compounds, J. Phys. Chem., 1970, 74, 4473–4480.

    Article  Google Scholar 

  34. R. C. Helgeson, B. P. Czech, E. Chapoteau, C. R. Gebauer, A. Kumar and D. J. Cram, Host–guest complexation. 50. Potassium and sodium ion-selective chromogenic ionophores, J. Am. Chem. Soc., 1989, 111, 6339–6350

    Article  CAS  Google Scholar 

  35. Y. Kato, S. Okada, K. Tomimoto and T. Mese, A facile bromination of hydroxyheteroarenes, Tetrahedron Lett., 2001, 42, 4849–4851.

    Article  CAS  Google Scholar 

  36. W. H. Melhuish, Quantum efficiencies of fluorescence of organic substances: Effect of sovnet and concentration of the fluorescent solute, J. Phys. Chem., 1961, 65, 229–235.

    Article  CAS  Google Scholar 

  37. D. Horn and J. Rieger, Organic nanoparticles in the aqueous phase - theory, experiment, and use, Angew. Chem., Int. Ed., 2001, 40, 4330–4361.

    Article  CAS  Google Scholar 

  38. H. Kasai, H. S. Nalwa, S. Okada, H. Oikawa and H. Nakanish, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, New York, 2000, vol. 5, chapter 8, pp. 433–473.

    Book  Google Scholar 

  39. W. E. Brewer, M. L. Martinez, P.-T. Chou, Mechanism of the ground-state reverse proton transfer of 2-(2-Hydroxyphenyl) benzothiazole, J. Phys. Chem., 1990, 94, 1915–1918.

    Article  CAS  Google Scholar 

  40. R. S. Iglesias, P. F. B. Goncalves and P. R. Livotto, Semi-empirical study of a set of 2-(2′-hydroxyphenyl)benzazoles using the polarizable continuum model, Chem. Phys. Lett., 2000, 327, 23–28.

    Article  CAS  Google Scholar 

  41. F. Liang, L. Wang, D. Ma, X. Jing and F. Wang, Oxadiazole-containing material with intense blue phosphorescence emission for organic light-emitting diodes, Appl. Phys. Lett., 2002, 81, 4–6.

    Article  CAS  Google Scholar 

  42. R. de Vivie-Riedle, V. De Waele, L. Kurtz and E. Riedle, Ultrafast excited-state proton transfer of 2-(2′-hydroxyphenyl)benzothiazole: Theoretical analysis of the skeletal deformations and the active vibrational modes, J. Phys. Chem. A, 2003, 107, 10591–10599.

    Article  CAS  Google Scholar 

  43. C. Hansch, A. Leo and R. W. Taft, A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 1991, 91, 165–195.

    Article  CAS  Google Scholar 

  44. H. Auweter, H. Haberkorn, W. Heckmann, D. Horn, E. Luddecke, J. Rieger and H. Weiss, Supramolecular structure of precipitated nanosize β-carotene particles, Angew. Chem., Int. Ed., 1999, 38, 2188–2191.

    Article  CAS  Google Scholar 

  45. S. M. Chang, K. L. Hsueh, B. K. Huang, J. H. Wu, C. C. Liao and K. C. Lin, Solvent effect of excited state intramolecular proton transfer in 2-(2′-hydroxyphenyl) benzothiazole upon luminescent properties, Surf. Coat. Technol., 2006, 200, 3278–3282.

    Article  CAS  Google Scholar 

  46. M. A. El-Kemary, Relaxation pathways of photoexcited non-steroidal anti-inflammatory drugs: flufenamic and mefenamic acids, Chem. Phys., 2003, 295, 1–10.

    Article  CAS  Google Scholar 

  47. S. Lochbrunner, A. J. Wurzer and E. Riedle, Microscopic mechanism of ultrafast excited-state intramolecular proton transfer: A 30-fs study of 2-(2′-hydroxyphenyl)benzothiazole, J. Phys. Chem. A, 2003, 107, 10580–10590.

    Article  CAS  Google Scholar 

  48. M. Barbatti, A. J. A. Aquino, H. Lischka, C. Schriever, S. Lochbrunnerw and E. Riedle, Ultrafast internal conversion pathway and mechanism in 2-(2-hydroxyphenyl)benzothiazole: a case study for excited-state intramolecular proton transfer systems, Phys. Chem. Chem. Phys., 2009, 11, 1406–1415.

    Article  CAS  PubMed  Google Scholar 

  49. J. Huang, A. Peng, H. Fu, Y. Ma, T. Zhai and J. Yao, Temperature-dependent ratiometric fluorescence from an organic aggregates system, J. Phys. Chem. A, 2006, 110, 9079–9083.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Hee Kim or Dae Won Cho.

Additional information

Electronic supplementary information (ESI) available: HOMO and LUMO orbital diagrams, absorption spectra of naonoparticles, and temperature-dependent emission spectra. See DOI: 10.1039/b9pp00102f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H., Roh, SG., Jung, SD. et al. Excited-state intramolecular proton transfer on 2-(2′-hydroxy-4′-R-phenyl)benzothiazole nanoparticles and fluorescence wavelength depending on substituent and temperature. Photochem Photobiol Sci 9, 722–729 (2010). https://doi.org/10.1039/b9pp00102f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00102f

Navigation