Skip to main content

Advertisement

Log in

Enhanced efficiency of the visible-light photocatalytic hydrogen generation by the ruthenium tris(2,2′-bipyridyl)-methyl viologen system in the presence of cucurbit[n]urils

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cucurbiturils are cyclic oligomers of glycoluril units whose molecular shape defines an internal hollow space accessible through carbonyl portals. It is known that methyl viologen forms strong host -guest complexes with CB[7] and CB[8]. In the latter case even a dimer can be hosted inside CB[8]. Classical solution systems for visible light H2 generation use methyl viologen as an electron relay. In this work we have found that the efficiency for H2 generation of the photocatalytic system comprising EDTA- ruthenium tris(2,2’-bipyridyl)- methyl viologen- Pt increases when cucurbiturils are present in the solution. The enhancement follows the order CB[6] < CB[7] < CB[8]. By means of laser flash photolysis we have established that this efficiency increase arises from the combination of an increase in the relative quantum yield of charge separation (higher efficiency in the formation of MV?+) and a decrease of MV?+ lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. M. Thomas, Photocatalysis for new energy production - Recent advances in photocatalytic water splitting reactions for hydrogen production, Catal. Today, 2007, 122, 51–61.

    Article  CAS  Google Scholar 

  2. M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable Sustainable Energy Rev., 2007, 11, 401–425.

    Article  CAS  Google Scholar 

  3. J. Nowotny, C. C. Sorrell, L. R. Sheppard, T. Bak, Solar-hydrogen: Environmentally safe fuel for the future, Int. J. Hydrogen Energy, 2005, 30, 521–544.

    Article  CAS  Google Scholar 

  4. H. Tributsch, Photovoltaic hydrogen generation, Int. J. Hydrogen Energy, 2008, 33, 5911–5930.

    Article  CAS  Google Scholar 

  5. J. Kiwi, M. Gratzel, Hydrogen Evolution From Water Induced by Visible-LIight Mediated by Redox Catalysis, Nature, 1979, 281, 657–658.

    Article  CAS  Google Scholar 

  6. H. Sun, A. Yoshimura, M. Z. Hoffman, Oxidative quenching of the escited-state of tris(2,2’-bipyridine)ruthenium(2+) ion by mehtylviologen - variation of solution medium and temperature, J. Phys. Chem., 1994, 98, 5058–5064.

    Article  CAS  Google Scholar 

  7. J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, The cucurbit[n]uril family, Angew. Chem., Int. Ed., 2005, 44, 4844–4870.

    Article  CAS  Google Scholar 

  8. J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim, K. Kim, Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry, Acc. Chem. Res., 2003, 36, 621–630.

    Article  CAS  Google Scholar 

  9. W. L. Mock, Cucurbituril, Top. Curr. Chem., 1995, 175, 1–24.

    Article  CAS  Google Scholar 

  10. A. Schroder, H. B. Mekelburger, F. Vogtle, Belt-shaped, ball-shaped, and tube-shaped molecules, Top. Curr. Chem., 1994, 172, 179–201.

    Article  Google Scholar 

  11. L. Isaacs, Cucurbit[n]urils: from mechanism to structure and function, Chem. Commun., 2009, 619–629.

    Google Scholar 

  12. K. Kim, Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies, Chem. Soc. Rev., 2002, 31, 96–107.

    Article  CAS  Google Scholar 

  13. J. Mohanty, W. M. Nau, Ultrastable rhodamine with cucurbituril, Angew. Chem., Int. Ed., 2005, 44, 3750–3754.

    Article  CAS  Google Scholar 

  14. P. Montes-Navajas, L. Teruel, A. Corma, H. Garcia, Specific binding effects for cucurbit[8]uril in 2,4,6-triphenylpyrylium-cucurbit[8]uril host-guest complexes: Observation of room-temperature phosphorescence and their application in electroluminescence, Chem.-Eur. J., 2008, 14, 1762–1768.

    Article  CAS  Google Scholar 

  15. W. Ong, M. Gomez-Kaifer, A. E. Kaifer, Cucurbit[7]uril: A very effective host for viologens and their cation radicals, Org. Lett., 2002, 4, 1791–1794.

    Article  CAS  Google Scholar 

  16. W. Ong, A. E. Kaifer, Salt effects on the apparent stability of the cucurbit[7]uril-methyl viologen inclusion complex, J. Org. Chem., 2004, 69, 1383–1385.

    Article  CAS  Google Scholar 

  17. W. S. Jeon, H. J. Kim, C. Lee, K. Kim, Control of the stoichiometry in host-guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril, Chem. Commun., 2002, 1828–1829.

    Google Scholar 

  18. P. A. Brugger, P. Cuendet, M. Gratzel, Ultrafine and specific catalysts affording efficient hydrogen evolution from water under visible-light illumination, J. Am. Chem. Soc., 1981, 103, 2923–2927.

    Article  CAS  Google Scholar 

  19. P. K. Dutta, J. A. Incavo, Photoelectron transfer from tris(2,2’-bipyridine)ruthenium(ii) to methyl viologen in zeolite cages - a resonance Raman-spectroscopic study, J. Phys. Chem., 1987, 91, 4443–4446.

    Article  CAS  Google Scholar 

  20. P. K. Dutta, W. Turbeville, Intrazeolitic photoinduced redox reactions between Ru(bpy)32+ and methyl viologen, J. Phys. Chem., 1992, 96, 9410–9416.

    Article  CAS  Google Scholar 

  21. K. Kalyanasundaram, J. Kiwi, M. Gratzel, Hydrogen evolution from water by visible-light, a homogeneous 3 component test system for redox catalysis, Helv. Chim. Acta, 1978, 61, 2720–2730.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermenegildo García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, C.G., de Miguel, M., Ferrer, B. et al. Enhanced efficiency of the visible-light photocatalytic hydrogen generation by the ruthenium tris(2,2′-bipyridyl)-methyl viologen system in the presence of cucurbit[n]urils. Photochem Photobiol Sci 8, 1650–1654 (2009). https://doi.org/10.1039/b9pp00063a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00063a

Navigation