Skip to main content
Log in

Encapsulation of 2-(4′-N,N-dimethylamino)phenylimidazo[4,5-b]pyridine in β-cyclodextrin: effect on H-bond-induced intramolecular charge transfer emission

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effect of β-cyclodextrin (β-CD) inclusion complex formation on the hydrogen bond-induced intramolecular charge transfer (ICT) of 2-(4’-N,N-dimethylamino)phenylimidazo[4,5-b]pyridine (DMAPIP-b) has been examined by fluorescence excitation, emission and time-resolved fluorescence techniques. The study reveals that DMAPIP-b forms 1?:?1 inclusion complex with β-CD. The host -guest complex is formed by partial inclusion of DMAPIP-b,i.e. only the dimethylaminophenyl ring is encapsulated inside the core of the β-CD nanocavity. The imidazopyridine ring of the guest molecule resides outside CD cavity and forms H-bonds with the water molecules that are present near the rim and in the bulk phase. 1H NMR studies are used to confirm the inclusion complex. The H-bond of water with the pyridinenitrogen ensures the formation of the ICT state and both normal and ICT emissions are enhanced inside the β-CD cavity. Fluorescence lifetime measurements suggest that the formation of the ICT state from the locally excited state is irreversible. Dual emission is observed in the presence of β-CD at pH ~ 3.5, due to emission from monocations formed by the protonation of pyridine nitrogen (MC1) and imidazolenitrogen (MC2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Szejtli, Cyclodextrins, in Encyclopedia of Supramolecular Chemistry, ed. J. L. Atwood and J. W. Steed, Marcel Dekker, New York, 2004, pp. 398–413.

    Chapter  Google Scholar 

  2. D. B. Amabilino, D. F. Stoddart, Interlocked and intertwined structures and superstructures, Chem. Rev., 1995, 95, 2725–2828.

    Article  CAS  Google Scholar 

  3. K. A. Connors, The stability of cyclodextrin complexes in solution, Chem. Rev., 1997, 97, 1325–1357.

    Article  CAS  PubMed  Google Scholar 

  4. N. Kandoth, S. D. Choudhury, T. Mukherjee, H. Pal, Host-guest interaction of 1,4-dihydroxy-9,10-anthraquinone (quinizarin) with cyclodextrins, Photochem. Photobiol. Sci., 2009, 8, 82–90.

    Article  PubMed  CAS  Google Scholar 

  5. X. H. Zhang, Y. Wang, W. J. Jin, Chiral discrimination of quinine and quinidine based on notable room temperature phosphorescence lifetime differences with gamma-cyclodextrin as chiral selector, Talanta, 2007, 73, 938–942.

    Article  PubMed  CAS  Google Scholar 

  6. A. M. de la Pena, N. M. Diez, D. B. Gil, E. C. Carranza, Second-Order Data Obtained by Time-Resolved Room Temperature Phosphorescence. A New Approach for PARAFAC Multicomponent Analysis, J. Fluoresc., 2009, 19, 345–352.

    Article  CAS  Google Scholar 

  7. A. Banerjee, K. Basu, P. K. Sengupta, Effect of β-cyclodextrin nanocavity confinement on the photophysics of robinetin, J. Photochem. Photobiol., B, 2007, 89, 88–97.

    Article  CAS  Google Scholar 

  8. M. Sanz, J. A. Organero, A. Douhal, Proton and charge transfer reactions dynamics of a hydroxyflavone derivative in a polar solvent and in a cyclodextrin nanocavity, Chem. Phys., 2007, 338, 135–142.

    Article  CAS  Google Scholar 

  9. A. Nag, N. Dutta, N. Chattoadhyay, K. Bhattacharyya, Effect of cyclodextrine cavity size on twisted intramolecular charge transfer emission: Dimethylamino benzonitrile in β-cyclodextrine, Chem. Phys. Lett., 1989, 157, 83–86.

    Article  Google Scholar 

  10. K. A. Al-Hassan, U. K. A. Klein, A. Suwaiyan, Normal and twisted intramolecular charge-transfer fluorescence of 4-dimethylaminobenzonitrile in alpha-cyclodextrine cavities, Chem. Phys. Lett., 1993, 212, 581–587.

    Article  CAS  Google Scholar 

  11. M. Shaikh, J. Mohanty, A. C. Bhasikuttan, H. Pal, Tuning dual emission behavior of p-dialkylaminobenzonitriles by supramolecular interactions with cyclodextrin hosts, Photochem. Photobiol. Sci., 2008, 7, 979–985.

    Article  PubMed  CAS  Google Scholar 

  12. J. A. Faiz, L. E. P. Kyllonen, P. Contreras-Carballada, R. M. Williams, L. De Cola, Z. Pikramenou, Photoinduced energy transfer across non-covalent bonds in the nanoscale: cyclodextrin hosts with enhanced luminescent properties for guest communication, Dalton Trans., 2009, 3980–3987.

    Google Scholar 

  13. S. Ralkshit, S. Vasudevan, Resonance energy transfer from beta-cyclodextrin-capped ZnO:MgO nanocrystals to included nile red guest molecules in aqueous media, ACS Nano, 2008, 2, 1473–1479.

    Article  CAS  Google Scholar 

  14. W. Rettig, Charge Separation in excited-states of decoupled systems-TICT compounds and implications regarding the development of new lasers-dyes and the primary processes of vision and photosynthesis, Angew. Chem., Int. Ed. Engl., 1986, 25, 971–988.

    Article  Google Scholar 

  15. Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures, Chem. Rev., 2003, 103, 3899–4031.

    Article  PubMed  Google Scholar 

  16. T. S. Singh, N. S. Moyon, S. Mitra, Effect of solvent hydrogen bonding on the photophysical properties of intramolecular charge transfer probe trans-ethyl p-(dimethylamino) cinamate and its derivative, Spectrochim. Acta, Part A, 2009, 73, 630–636.

    Article  CAS  Google Scholar 

  17. A. Rei, G. Hungerford, M. I. C. Ferreira, Probing local effects in silica sol-gel media by fluorescence spectroscopy of p-DASPMI, J. Phys. Chem. B, 2008, 112, 8832–8839.

    Article  PubMed  CAS  Google Scholar 

  18. A. Pigliucci, E. Vauthey, W. Rettig, Entropic effects in excited state CT reactions, Chem. Phys. Lett., 2009, 469, 115–120.

    Article  CAS  Google Scholar 

  19. M. Sowmiya, P. Purkayastha, A. K. Tiwari, S. S. Jaffer, S. K. Saha, Characterization of guest molecule concentration dependent nanotubes of beta-cyclodextrin and their secondary assembly: Study with trans-2-[4(dimethylamino)styryl]benzothiazole, a TICT-fluorescence probe, J. Photochem. Photobiol., A, 2009, 205, 186–196.

    Article  CAS  Google Scholar 

  20. C.-Y. Yang, Y. Liu, D. Zheng, J.-C. Zhu, J. Dai, Luminescence of aniline blue in hydrophobic cavity of BSA, J. Photochem. Photobiol., A, 2007, 188, 51–55.

    Article  CAS  Google Scholar 

  21. Y.-B. Jiang, Effect of cyclodextrin inclusion complex-formation on the twisted intramolecular charge-transfer (TICT) of the included compound: thep-dimethylaminobenzoic acid-beta-cyclodextrin, J. Photochem. Photobiol., A, 1995, 88, 109–116.

    Article  CAS  Google Scholar 

  22. Y. H. Kim, W. Cho, M. Yoon, D. Kim, Observation of Hydrogen-Bonding Effects on twisted intramolecular charge transfer ofp-(N,N-diethylamino)benzoic acid in aqueous cyclodextrin solutions, J. Phys. Chem., 1996, 100, 15670–15676.

    Article  CAS  Google Scholar 

  23. Y. Matsushita, T. Suzuki, T. Ichimura, T. Hikida, The cavity size effect on the fluorescence properties of 4 ‘-dimethylaminoacetophenone complexed with cyclodextrins, Chem. Phys., 2003, 286, 399–407.

    Article  CAS  Google Scholar 

  24. N. Dash, F. A. S. Chipem, R. Swaminathan, G. Krishnamoorthy, Hydrogen bond induced twisted intramolecular charge transfer in 2-(4’-N,N-dimethylamino) phenylimidazo[4,5-b]pyridine, Chem. Phys. Lett., 2008, 460, 119–124.

    Article  CAS  Google Scholar 

  25. V. Ramamurthy, D. F. Eaton, Photochemistry and photophysics within cyclodextrin cavities, Acc. Chem. Res., 1988, 21, 300–306.

    Article  CAS  Google Scholar 

  26. A. Heredia, G. Requena, F. G. Sanchez, An approach for the estimation of the polarity of the beta-cyclodextrin internal cavity, J. Chem. Soc., Chem. Commun., 1985, 1814–1815.

    Google Scholar 

  27. K. W. Street, W. E. Acree, Estimation of the effective dielectric-constant of cyclodextrin cavaties based on the fluorescence properties of pyrene-3-carboxaldehyde, Appl. Spectrosc., 1988, 42, 1315–1318.

    Article  CAS  Google Scholar 

  28. S. Nigam, G. Durocher, Spectral and photophysical studies of inclusion complexes of some neutral 3H-indoles and their cations and anions with beta-cyclodextrin, J. Phys. Chem., 1996, 100, 7135–7142.

    Article  CAS  Google Scholar 

  29. H. A. Benesi, J. H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc., 1949, 71, 2703–2707.

    Article  CAS  Google Scholar 

  30. S. Hamai, Inclusion compounds in the systems of beta.-cyclodextrin-alcohol-pyrene in aqueous solution, J. Phys. Chem., 1989, 93, 2074–2078.

    Article  CAS  Google Scholar 

  31. W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 1965, 140, A1133–A1138.

    Article  Google Scholar 

  32. A. D. Becke, Density-functional thermochemistry.3. the role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  33. C. T. Lee, W. Yang, R. G. Parr, Development of the Colle-Savetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  34. J. B. Foresman, M. Head-Gordon, J. A. Pople, J. M. Frisch, Toward a systematic molecular-orbital theory for excited states, J. Phys. Chem., 1992, 96, 135.

    Article  CAS  Google Scholar 

  35. G. Krishnamoorthy, S. K. Dogra, Dual fluorescence of 2-(4’-N,N-dimethylaminophenyl)benzimidazole: effect of β- cyclodextrin and pH, J. Photochem. Photobiol., A, 1999, 123, 109–119.

    Article  CAS  Google Scholar 

  36. G. Krishnamoorthy, S. K. Dogra, Spectral characteristics of the various prototropic species of 2-(4’-N,N-diemethylaminophenyl)pyrido[3,4-d]imidazole, J. Org. Chem., 1999, 64, 6566–6574.

    Article  PubMed  CAS  Google Scholar 

  37. A. A. Abdel-Schafi, S. S. Al-Shihry, Fluorescence enhancement of 1-napthol-5-sulfonate by forming inclusion complex with β-cyclodextrin in aqueous solution, Spectrochim. Acta, Part A, 2009, 72, 533–537.

    Article  CAS  Google Scholar 

  38. G. Krishnamoorthy, S. K. Dogra, Twisted intramolecular charge transfer of 2-(4’-N,N-dimethylaminophenyl) pyrido[3,4-d]imdazole in cyclodextrins: effect of pH, J. Phys. Chem. A, 2000, 104, 2542–2551.

    Article  CAS  Google Scholar 

  39. S. Kundu, N. Chattopadhyay, Dual luminescence of dimethylamino benzaldehyde in aqueous β-cyclodextrin, J. Photochem. Photobiol., A, 1995, 88, 105–108.

    Article  CAS  Google Scholar 

  40. M. Zakharov, O. Krauss, Y. Nosenko, B. Brutschy, A. Dreuw, Specific microsolvation tiggers dissociation-mediated anomalous red-shifted fluorescence in the gas phase, J. Am. Chem. Soc., 2009, 131, 461–469.

    Article  PubMed  CAS  Google Scholar 

  41. M. K. Singh, H. Pal, A. S. R. Koti, A. V. Sapre, Photophysical properties and rotational dynamics of neutral red bound to β-cyclodextrin, J. Phys. Chem. A, 2004, 108, 1465–1474.

    Article  CAS  Google Scholar 

  42. M. A. Voinov, I. A. Kirilyuk, A. I. Smirnov, Spin-Labeled pH-Sensitive Phospholipids for Interfacial pKa Determination: Synthesis and Characterization in Aqueous and Micellar Solutions, J. Phys. Chem. B, 2009, 113, 3453–3460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. N. Dash, G. Krishnamoorthy, Photophysics of 2-(4’-N,N-Dimethylaminophenyl)imidazo[4,5-b]pyridine in Micelle: Selective Dual Fluorescence in Sodium dodecylsulphate and Triton X-100,, J. Fluoresc., 2009 10.1007/s10895-009-0531-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krishnamoorthy.

Additional information

† Electronic supplementary information (ESI) available: 1H NMR spectrum of DMAPIP-b in CDCl3; proton decoupled 1H NMR spectra of DMAPIP-b in CDCl3. See DOI: 10.1039/b9pp00023b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, N., Chipem, F.A.S. & Krishnamoorthy, G. Encapsulation of 2-(4′-N,N-dimethylamino)phenylimidazo[4,5-b]pyridine in β-cyclodextrin: effect on H-bond-induced intramolecular charge transfer emission. Photochem Photobiol Sci 8, 1708–1715 (2009). https://doi.org/10.1039/b9pp00023b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00023b

Navigation