Skip to main content
Log in

Photocycloaddition of the T1 excited state of thioinosine to uridine and adenosine

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Novel photoadducts were obtained by irradiation of thioinosine (6-thiopurine riboside, TI) in deaerated aqueous solution without and in the presence of uridine and adenosine. Excitation (λ > 300 nm) of TI to its excited S2 state yields a single bimolecular photoproduct. It is a purine–pyrimidine diriboside in which the purine ring is attached to the amidenitrogen of 6-amino-4-thioxo-5-formamidopyrimidine. When TI was irradiated in the presence of an excess of adenosine, two photoproducts were isolated: diribosides of N-(4,6-diaminopirymidin-5-yl)-N-formyl-6-aminopurine and N-(4-amino-6-formylamino-pyrimidin-5-yl)-6-aminopurine, both containing a purine and a formylaminopyrimidine (Fapy) fragment. The photoreaction of TI with uridine gave two regioisomeric photoproducts identified as diribosides containing either 5- or 6-(purin-6-yl)uracil as aglycones. A multistep mechanism leading to the stable photoproducts is proposed. In the first step of the mechanism, the C?S group of the excited TI undergoes a [2 + 2] cycloaddition regioselectively to the N(7)?C(8) bond of the purine ring or adds in a non-regioselective manner to the C(5)?C(6) bond of uracil. The unstable photoproducts thus formed undergo a series of dark reactions at room temperature. The photocycloaddition reactions originate from the excited T1 state of TI. This conclusion is supported by a combination of evidence from reaction quenching studies using both steady-state quantum yield determinations and kinetics results from nanosecond laser flash photolysis. The T1 state of TI is quenched by other TI molecules in their S0 state (self-quenching) and also by uridine and adenosine, all with large rate constants (0.8–5) × 109 M-1 s-1. The quantum yields of the reactions are in general very low (ϕR ≤ 8 × 10-3). The sources of the inefficiency in the photocycloaddition of TI to uridine and adenosine are discussed. The photoproducts containing the Fapy residue undergo deformylation and isomerization of the ribosyl moiety (anomerization, furanose/pyranose transformation) upon heating in aqueous solution. Products of the transformations were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aarbakke, G. Jankaschaub and G. Elion, Thiopurine biology and pharmacology, Trends Pharmacol. Sci., 1997, 18, 3–7.

    Article  CAS  Google Scholar 

  2. B. Montaner, P. O’Donovan, O. Reelfs, C. M. Perrett, X. Zhang, Y.-Y. Xu, X. Ren, P. Macpherson, D. Frith and P. Karran, Reactive oxygen-mediated damage to a human DNA replication and repair protein, EMBO Rep., 2007, 8, 1074–1079.

    Article  CAS  Google Scholar 

  3. A. Korolkovas, Essentials of Medicinal Chemistry, Wiley, New York, 1988, pp. 568–897.

    Google Scholar 

  4. A. Favre, 4-Thiouridine as an intrinsic photoaffinity probe of nucleic acid structure and interactions, in Bioorganic Photochemistry, ed. H. Morrison, Wiley, New York, 1990, vol. 1, pp. 379–425.

    Google Scholar 

  5. A. Favre, C. Saintome, J.-L. Fourrey, P. Clivio and P. Laugaa, Thionucleobases as intrininsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions, J. Photochem. Photobiol., B, 1998, 42, 109–124.

    Article  CAS  Google Scholar 

  6. K. M. Meisenheimer and T. H. Koch, Photocrosslinking of nucleic acids to associated proteins, Crit. Rev. Biochem. Mol. Biol., 1997, 32, 101–140.

    Article  CAS  Google Scholar 

  7. A. Woisard, A. Favre, P. Clivio, J.-L. Fourrey, Hammerhead ribozyme tertiary folding: Intrinsic photolabelling studies, J. Am. Chem. Soc., 1992, 114, 10072–10074.

    Article  CAS  Google Scholar 

  8. D. V. Dos Santos, J.-L. Fourrey and A. Favre, Flexibility of the bulge formed between a hairpin ribozyme and deoxy-substrate analogues, Biochem. Biophys. Res. Commun., 1993, 190, 377–385.

    Article  Google Scholar 

  9. A. Massey, Y.-Z. Xu and P. Karran, Photoactivation of DNA thiobases as a potential novel therapeutic option, Curr. Biol., 2001, 11, 1142–1146.

    Article  CAS  Google Scholar 

  10. X. Zhang, G. Jeffs, X. Ren, P. O’Donovan, B. Montaner, C. M. Perret, P. Karran, Y.-Z. Xu, Novel DNA lesions generated by the interaction between therapeutic thiopurines and UVA light, DNA Repair, 2007, 6, 344–354.

    Article  CAS  Google Scholar 

  11. V. J. Hemmens and D. E. Moore, Photooxidation of 6-mercaptopurine in aqueous solution, J. Chem. Soc., Perkin Trans. 2, 1984, 209–211.

    Google Scholar 

  12. G. Wenska and S. Paszyc, Photolysis of thiopurines in the presence of oxygen, Z. Naturforsch., B: Anorg. Chem., Org. Chem., 1981, 36, 1628–1631.

    Article  Google Scholar 

  13. D. J. Brown and T. Teitei, Nuclear methylation of some 6-substituted 4-aminopyrimidines, J. Chem. Soc., 1963, 3535–3539.

    Google Scholar 

  14. M.-T. Chenon, R. J. Pugmire, D. M. Grant, R. P. Panzica and L. B. Townsend, Carbon-13 magnetic resonance. XXV. Basic, set of parameters for the investigation of tautomerism in purines established from carbon-13 magnetic resonance studies using certain purines and pyrrolo[2,3-d]pyrimidines, J. Am. Chem. Soc., 1975, 97, 4627–4636.

    Article  CAS  Google Scholar 

  15. E. Breitmaier and W. Voelter, Carbon-13 NMR spectroscopy: High resolution methods and applications in organic Chemistry, VCH Verlagsgesellschaft, Weinham, 1989, pp. 127–130 and 379–414.

    Google Scholar 

  16. G. B. Brown and V. S. Weliky, The synthesis of 9-ß-d-ribofuranosyl-purine and the identity of nebularine, J. Biol. Chem., 1953, 204, 1019–1024.

    Article  CAS  Google Scholar 

  17. B. Skalski, J. Bartoszewicz, S. Paszyc, Z. Gdaniec and R. W. Adamiak, Fluorescent nucleoside with a new heterocyclic betaine as the aglycone. Photochemical preparation and properties, Tetrahedron, 1987, 43, 3955–3961.

    Article  CAS  Google Scholar 

  18. P. Ciuffreda, S. Casati and A. Manzocchi, Complete 1H and 13C NMR spectral assignment of α- and ß-adenosine, 2′deoxyadenosine and their acetate derivatives, Magn. Reson. Chem., 2007, 45, 781–784.

    Article  CAS  Google Scholar 

  19. A. Burdzy, B. Skalski, S. Paszyc, M. Popenda and R. W. Adamiak, Acid promoted transformations of fluorescent luminarosine and its 2′-modified analogues, Acta Biochim. Pol., 1998, 45, 941–948.

    Article  CAS  Google Scholar 

  20. S. Raoul, M. Bardet and J. Cadet, ? Irradiation of 2′-deoxyadenosine in oxygen-free aqueous solutions: identification and conformational features of formamidopyrimidine nucleoside derivatives, Chem. Res. Toxicol., 1995, 8, 924–933.

    Article  CAS  Google Scholar 

  21. H. Lönnberg and P. Lehikoinen, Mechanisms for the solvolytic decompositions of nucleoside analogs. XIII. Reaction, of 9-(ß-D-ribofuranosyl)purine with alkalies: kinetics and mechanism, J. Org. Chem., 1984, 49, 4964–4969.

    Article  Google Scholar 

  22. M. P. Gordon, V. S. Weliky and G. B. Brown, A study of the action of acid and alkali on certain purines and purine nucleosides, J. Am. Chem. Soc., 1957, 79, 3245–3250.

    Article  CAS  Google Scholar 

  23. C. Saintome, P. Clivio, A. Favre, J.-L. Fourrey, Photochemistry of 4-thiothymidine derivatives in the presence of N-9-substituted adenine derivatives: formation of N-6-formamidopyrimidines, J. Org. Chem., 1997, 62, 8125–8130.

    Article  CAS  Google Scholar 

  24. J. F. Robyt, Essentials of carbohydrate chemistry, Springer, New York, 1998, pp. 48–50.

    Book  Google Scholar 

  25. C. Saintome, P. Clivio, J.-L. Fourrey and C. Riche, RNA photolabeling mechanistic studies: X-ray crystal structure of the photoproduct formed between 4-thiothymidine and adenosine upon near UV irradiation, J. Am. Chem. Soc., 1996, 118, 8142–8143.

    Article  CAS  Google Scholar 

  26. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, Marcel Dekker, New York, 2nd edn, 1993.

    Google Scholar 

  27. S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys., 1962, 37, 814–822.

    Article  CAS  Google Scholar 

  28. M. M. Alam, M. Fujitsuka, A. Watanabe and O. Ito, Photochemical properties of excited triplet state of 6H-purine-6-thione investigated by laser flash photolysis, J. Phys. Chem. A, 1998, 102, 1338–1344.

    Article  CAS  Google Scholar 

  29. Y. Harada, T. Suzuki, T. Ichimura, Y.-Z. Xu, Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique, J. Phys. Chem. B, 2007, 111, 5518–5524.

    Article  CAS  Google Scholar 

  30. N. J. Turro and V. Ramamurthy, Source of inefficiency in photochemical triplet cycloaddition and hydrogen abstraction reactions, Mol. Photochem., 1977, 8, 239–253.

    CAS  Google Scholar 

  31. P. de Mayo, Thione photochemistry, and the chemistry of the S2 state, Acc. Chem. Res., 1976, 9, 52–59.

    Article  Google Scholar 

  32. V. P. Rao and V. Ramamurthy, Photochemistry of a,ß-unsaturated thiones: Addition to electron rich olefins from T1, J. Org. Chem., 1988, 53, 327–332.

    Article  CAS  Google Scholar 

  33. T. Nishio, Y. Mori and A. Hosomi, Photochemical reactions of benzothiazole-2-thiones, J. Chem. Soc., Perkin Trans. 1, 1993, 2197–2200.

    Google Scholar 

  34. A. Padwa, M. N. Jacquez and A. Schmidt, An approach toward azacycles using photochemical and radical cyclization of N-alkenyl substituted 5-thioxopyrrolidin-2-ones, J. Org. Chem., 2004, 69, 33–45.

    Article  CAS  Google Scholar 

  35. A. H. Lawrence, C. C. Liao, P. de Mayo and V. Ramamurthy, Thione photochemistry. Cycloaddition in a saturated alicyclic system, J. Am. Chem. Soc., 1976, 98, 2219–2226.

    Article  CAS  Google Scholar 

  36. J. F. Gerster, J. W. Jones and R. K. Robins, Purine nucleosides. IV. The, synthesis of 6-halogenated 9-ß-D-ribofuranosylpurines from inosine and guanosine, J. Org. Chem., 1963, 28, 945–948.

    Article  CAS  Google Scholar 

  37. G. Burdzinski, A. Maciejewski, G. Buntinx, O. Poizat and C. Lefumeux, Ultrafast quenching of the excited S2 state of benzopyranthione by acetonitrile, Chem. Phys. Lett., 2004, 384, 332–338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazyna Wenska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenska, G., Filipiak, P., Burdziński, G. et al. Photocycloaddition of the T1 excited state of thioinosine to uridine and adenosine. Photochem Photobiol Sci 8, 1379–1388 (2009). https://doi.org/10.1039/b908552a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b908552a

Navigation