Skip to main content
Log in

Kinetics of reversible photoisomerization: determination of the primary quantum yields for the E-Z photoisomerization of silylenephenylenevinylene derivatives

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The kinetics scheme for directly excited, photoreversible reactions is solved exactly under the assumptions of no irreversible side reactions and constant excitation intensity for the duration of the reaction. The advantages of the methodology over the extrapolation-to-zero-time and the back-reaction correction methods are (i) that the quantum yields of both the forward and reverse photoreactions can be obtained starting from either pure reactant or pure product and (ii) the conversion percentage is not limited to a narrow domain in the neighborhood of small conversions. Examples of E-Z photoisomerizations are given to illustrate the fitting procedures required. The results from these examples are compared to the photoisomerization method of extrapolating the empirical quantum yields to zero time and the back-reaction correction. The exact equations are used to justify the extrapolation-to-zero-time method and to establish criteria on extrapolation ranges for the conversion percentage of starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, CA, 1978.

    Google Scholar 

  2. A. A. Lamola, G. S. Hammond, Mechanisms of photochemical reactions in solution 33. Intersystem crossing efficiencies, J. Chem. Phys., 1965, 43, 2129–2135.

    Article  CAS  Google Scholar 

  3. P. J. Wagner, Energy transfer kinetics in solution, in Creation and Detection of the Excited State, ed. A. A. Lamola, Marcel Dekker, New York, 1971, pp. 173–212.

    Google Scholar 

  4. J. Saltiel, A. Marinari, D. W. L. Chang, J. C. Mitchener, E. D. Megarity, Trans-cis photoisomerization of the stilbenes and a re-examination of the positional dependence of the heavy-atom effect, J. Am. Chem. Soc., 1979, 101, 2982–2996.

    Article  CAS  Google Scholar 

  5. W. Augustyniak and B. Marciniak, Metody ilosciowe badania mechanizmów reakcji fotochemicznych. Wyznaczanie wydajnosci kwantowych i stalych szybkosci, in Metody Badania Mechanizmów Reakcji Fotochemicznych, ed. B. Marciniak, Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznan, Poland, 1999.

    Google Scholar 

  6. H. Mauser, Formale Kinetik, Bertelsmann-Universitätsverlag, Düsseldorf, 1974.

    Google Scholar 

  7. M. Bayda, M. Majchrzak, K. Wieczorek, H. Kozubek, B. Marciniec, B. Marciniak, Cis-trans photoisomerization of silylene-vinylene-p-phenylene polymers and their model compounds, J. Photochem. Photobiol., A, 2008, 195, 30–38.

    Article  CAS  Google Scholar 

  8. G. Zimmermann, L.-Y. Chow, U.-J. Paik, The photochemical isomerization of azobenzene, J. Am. Chem. Soc., 1958, 80, 3528–3531.

    Article  Google Scholar 

  9. H. Rau, Further evidence for rotation in the π,π* and inversion in the n,p* photoisomerization of azobenzenes, J. Photochem., 1984, 26, 221–225.

    Article  CAS  Google Scholar 

  10. G. Gauglitz, P. Stossel, H. Meier, H. Rau, Photokinetic examination of (Z,E,E)-4,4’-distyrylazobenzene, J. Photochem. Photobiol., A, 1995, 85, 207–211.

    Article  CAS  Google Scholar 

  11. E. Fischer, Calculation of photostationary states in systems A → B when only A is known, J. Phys. Chem., 1967, 71, 3704–3706.

    Article  CAS  Google Scholar 

  12. M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, Wiley-VCH, New York, 1995.

    Google Scholar 

  13. K. Levenberg, A method for the solution of certain problems in least squares, Q. Appl. Math., 1944, 2, 164–168.

    Article  Google Scholar 

  14. D. Marquardt, An algorithm for least squares estimation on nonlinear parameters, SIAM J. Appl. Math., 1963, 11, 431–441.

    Article  Google Scholar 

  15. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, Dekker, New York, 2nd Edition, 1993.

    Google Scholar 

  16. B. Marciniec, C. Pietraszuk, Silylation of styrene with vinylsilanes catalyzed by RuCl(SiR3)(CO)(PPh3)2 and RuHCl(CO)(PPh3)3, Organometallics, 1997, 16, 4320–4326.

    Article  CAS  Google Scholar 

  17. C. Pietraszuk, B. Marciniec and M. Jankowska, Sposób otrzymywania trans-β-(sililo)styrenów, Pol. Pat. 195–453, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available: Derivation of the relationship of the equations to those of Wagner; derivation of Lamola-Hammond equation from Wagner’s solutions. See DOI: 10.1039/b907242j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayda, M., Hug, G.L., Lukaszewicz, J. et al. Kinetics of reversible photoisomerization: determination of the primary quantum yields for the E-Z photoisomerization of silylenephenylenevinylene derivatives. Photochem Photobiol Sci 8, 1667–1675 (2009). https://doi.org/10.1039/b907242j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b907242j

Navigation