Skip to main content
Log in

Photoreactions of substituted o-cresyl acylates in cyclohexane and in polyethylene films. The influences of intra- and inter-molecular ‘crowding’ effects

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photo-Fries rearrangements and associated photoreactions of four o-cresyl acylates were investigated in cyclohexane and in unstretched and stretched polyethylene (PE) films with different degrees of crystallinity. The esters differ in the number of phenyl substituents attached to the methyl group of the cresyl part and the length of the acyl chain. The influences of intramolecular structural factors and intermolecular environmental effects on the fates of the excited singlet states and the singlet state aryloxy/acyl radical pairs generated subsequently from them are explored. The results indicate that there are definable limits to the selectivity of the photoreactions of aryl esters that are dependent on their shapes and the ability of their environments to interact with them. Quantum yields for the reactions of the o-cresyl acylates were measured in cyclohexane and their values can be understood on the bases of a combination of conformational and electronic factors. The PE cavities holding the less globularly shaped o-cresyl acylates act as templates for the formation of the photoproducts: the ratios of the 2- and 4-position photo-Fries rearrangement products from o-cresyl acetate and 2-benzylphenyl acetate are higher when irradiated in films that are stretched or have higher film crystallinity; control by the PE cavities over the fates of the radical pairs is diminished for the o-cresyl acylate with two phenyl groups appended to the methyl of the cresyl part. The cavities of the PE films exert an interesting influence on the ability of the excited singlet states to undergo concerted decarboxylation reactions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Coyle, Photochemistry of carboxylic acid derivatives, Chem. Rev., 1978, 78, 97–123.

    Article  CAS  Google Scholar 

  2. D. Bellus, Photo-Fries rearrangement and related photochemical [1, j]-shifts (j = 3, 5, 7) of carbonyl and sulfonyl groups, Adv. Photochem., 1971, 8, 109–159.

    CAS  Google Scholar 

  3. M. A. Miranda, CRC Handbook of Organic Photochemistry and Photobiology, ed. W. M. Horspool and P. S. Song, CRC Press LLC, Boca Raton, 1995, Ch. 47.

  4. N. P. Gritsan, Y. P. Tsentalovich, A. V. Yurkovskaya, R. Z. Sagdeev, Laser Flash Photolysis and CIDNP Studies of 1-Naphthyl Acetate Photo-Fries Rearrangement, J. Phys. Chem., 1996, 100, 4448–4458.

    Article  CAS  Google Scholar 

  5. W. Adam, Multiplicity of the photo-Fries rearrangement, J. Chem. Soc., Chem. Commun., 1974, 289–290.

    Google Scholar 

  6. W. Adam, J. Arce de Sanabia, CIDNP [chemically induced dynamic nuclear polarization] evidence for radical pair mechanism in photo-Fries rearrangement, J. Org. Chem., 1973, 38, 2571–2572.

    Article  CAS  Google Scholar 

  7. J. W. Meyer, G. S. Hammond, Mechanism of photochemical reactions in solution. LXX. Photolysis, of aryl esters, J. Am. Chem. Soc., 1972, 94, 2219–2228.

    Article  CAS  Google Scholar 

  8. H. Shizuka, T. Morita, Photochemical rearrangement of phenyl acetate, Bull. Chem. Soc. Jpn., 1969, 42, 1831–1836.

    Article  CAS  Google Scholar 

  9. R. Suau, G. Torres, M. Valpuesta, The photo-Fries rearrangement of 2,5-disubstituted phenyl acetates, Tetrahedron Lett., 1995, 36, 1311–1314.

    Article  CAS  Google Scholar 

  10. R. A. Finnegan, D. Knutson, Additional examples of a novel photo-decarboxylation process; the preparation of some hindered aryl ketones, Chem. Ind., 1965, 1837–1838.

    Google Scholar 

  11. R. A. Finnegan, D. Knutson, Photochemical studies. VII. Solvent, effects on the photolysis of aryl esters: Fries rearrangement vs. decarboxylation, Tetrahedron Lett., 1968, 9, 3429–3432.

    Article  Google Scholar 

  12. R. A. Finnegan, D. Knutson, Stereochemistry of photodecarboxylation and photodecarbonylation reactions of aryl esters. The photolysis of (S)-(+)-3, 5-di-tert-butylphenyl 2-methylbutanoate, J. Am. Chem. Soc., 1967, 89, 1970–1972.

    Article  CAS  Google Scholar 

  13. T. Mori, R. G. Weiss, Y. Inoue, Enhanced photodecarboxylation of an aryl ester in polyethylene films, Org. Lett., 2003, 5, 4661–4664.

    Article  CAS  PubMed  Google Scholar 

  14. T. Mori, R. G. Weiss, Y. Inoue, Mediation of conformationally controlled photodecarboxylations of chiral and cyclic aryl esters by substrate structure, temperature, pressure, and medium constraints, J. Am. Chem. Soc., 2004, 126, 8961–8975.

    Article  CAS  PubMed  Google Scholar 

  15. C. Cui, R. G. Weiss, Photo-Fries rearrangements of 2-naphthyl acylates as probes of the size and shape of guest sites afforded by unstretched and stretched low-density polyethylene films. A case of remarkable selectivity, J. Am. Chem. Soc., 1993, 115, 9820–9821.

    Article  CAS  Google Scholar 

  16. W. Gu, A. J. Hill, X. Wang, C. Cui, R. G. Weiss, Photorearrangements of five 1- and 2-naphthyl acylates in three unstretched and stretched polyethylene Films. Does reaction selectivity correlate with free volumes measured by positron annihilation lifetime spectroscopy?, Macromolecules, 2000, 33, 7801–7811.

    Article  CAS  Google Scholar 

  17. W. Gu, M. Warrier, B. Schoon, V. Ramamurthy, R. G. Weiss, Understanding the influence of active (zeolite) and passive (polyethylene) reaction cages on photo-Claisen rearrangements of aryl benzyl ethers, Langmuir, 2000, 16, 6977–6981.

    Article  CAS  Google Scholar 

  18. C. Luo, P. Passin, R. G. Weiss, Comparisons of photo-Fries rearrangements of 4-dodecylphenyl phenylacetate and two structurally related esters in hexane and polyethylene cages. How important are anchoring chains?, Photochem. Photobiol., 2006, 82, 163–170.

    Article  CAS  PubMed  Google Scholar 

  19. W. Gu, R. G. Weiss, Mediation of photochemical reactions of 1-naphthyl phenylacylates by polyolefin films. A ‘radical clock’ to measure rates of radical-pair cage recombinations in ‘viscous space’, Tetrahedron, 2000, 56, 6913–6925.

    Article  CAS  Google Scholar 

  20. W. Gu, M. Warrier, V. Ramammurthy, R. G. Weiss, Photo-Fries reactions of 1-naphthyl esters in cation-exchanged zeolite Y and polyethylene media, J. Am. Chem. Soc., 1999, 121, 9467–9468.

    Article  CAS  Google Scholar 

  21. U. Bhattacharjee, C. A. Chesta, R. G. Weiss, Temperature-dependent cage effects from triplet radical pairs generated upon irradiation of 1-(4-methylphenyl)-3-phenyl-2-propanone in polyethylene films, Photochem. Photobiol. Sci., 2004, 3, 287–295.

    Article  CAS  PubMed  Google Scholar 

  22. C. A. Chesta, J. Mohanty, W. M. Nau, U. Bhattacharjee, R. G. Weiss, New insights into the mechanism of triplet radical-pair combinations. The persistent radical effect masks the distinction between in-cage and out-of-cage processes, J. Am. Chem. Soc., 2007, 129, 5012–5022.

    Article  CAS  PubMed  Google Scholar 

  23. J. Xu, R. G. Weiss, Analyses of in-cage singlet radical-pair motions from irradiations of 1-naphthyl (R)-1-phenylethyl ether and 1-naphthyl (R)-2-phenylpropanoate in n-alkanes, J. Org. Chem., 2005, 70, 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  24. J. Xu, R. G. Weiss, Enantioselectivity of prochiral radical-pair recombinations. Reaction cavity differentiation in polyethylene films, Org. Lett., 2003, 5, 3077–3080.

    Article  CAS  PubMed  Google Scholar 

  25. J. Xu, R. G. Weiss, Combinations of chiral and prochiral singlet radical-pairs in reaction cavities of polyethylene films. Control and analysis of radical tumbling and translation, Photochem. Photobiol. Sci., 2005, 4, 348–358.

    Article  CAS  PubMed  Google Scholar 

  26. W. Gu, S. Bi, R. G. Weiss, Photo-Fries rearrangements of 1-naphthyl esters in the glassy and melted states of poly(vinyl acetate). Comparisons with reactions in less polar polymers and low-viscosity solvents, Photochem. Photobiol. Sci., 2002, 1, 52–59.

    Article  CAS  PubMed  Google Scholar 

  27. R. G. Weiss, V. Ramamurthy, G. S. Hammond, Photochemistry in organized and confining media: a model, Acc. Chem. Res., 1993, 26, 530–536.

    Article  CAS  Google Scholar 

  28. W. Brandt and A. Dupasquier, Eds.; Positron Solid-State Physics, North-Holland: Amsterdam, 1983.

    Google Scholar 

  29. D. M. Schrader, and Y. C. Jean, Eds.; Positron and Positronium Chemistry, Elsevier, Amsterdam, 1988.

    Google Scholar 

  30. Y. C. Jean, H. Nakanishi, L. Y. Hao, T. C. Sandreczki, Anisotropy of free-volume-hole dimensions in polymers probed by positron-annihilation spectroscopy, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, 42, 9705–9708.

    Article  CAS  Google Scholar 

  31. Y. C. Jean, Y. Rhee, Y. Lou, D. Shelby, G. L. Wilkers, Anisotropy of hole structures in oriented polycarbonate probed by two-dimensional angular correlation of annihilation radiation, J. Polym. Sci., Part B: Polym. Phys., 1996, 34, 2979–2985.

    Article  CAS  Google Scholar 

  32. O. E. Zimerman, C. Cui, X. Wang, T. D. Atvars, R. G. Weiss, Structural characterization of five polyethylene films and the diffusion of N, N- dimethylaniline within them. Attempted correlations between probe dynamics and pertinent macroscopic and microscopic polymer properties, Polymer, 1998, 39, 1177–1185.

    Article  CAS  Google Scholar 

  33. C. Wang, J. Xu, R. G. Weiss, Factors influencing orientations of covalently-attached and doped aromatic groups in stretched polyethylene films, J. Phys. Chem. B, 2003, 107, 7015–7025.

    Article  CAS  Google Scholar 

  34. C. Luo, T. D. Z. Atvars, P. Meakin, A. J. Hill, R. G. Weiss, Determination of initial and long-term microstructure changes in ultrahigh molecular weight polyethylene induced by drawing neat and pyrenyl modified films, J. Am. Chem. Soc., 2003, 125, 11879–11892.

    Article  CAS  PubMed  Google Scholar 

  35. R. O. Rahn, Potassium iodide as a chemical actinometer for 254 nm radiation: use of iodate as an electron scavenger, Photochem. Photobiol., 1997, 66, 450–455.

    Article  CAS  Google Scholar 

  36. R. O. Rahn, M. I. Stefan, J. R. Bolton, E. Goren, P. S. Shaw, K. R. Lykke, Quantum yield of the iodide-iodate chemical actinometer: Dependence on wavelength and concentration, Photochem. Photobiol., 2003, 78, 146–152.

    Article  CAS  PubMed  Google Scholar 

  37. J. J. Talley, I. A. Evans, Reaction of lithium o-lithiophenoxide with carbonyl compounds, J. Org. Chem., 1984, 49, 5267–5269.

    Article  CAS  Google Scholar 

  38. G. N. Dorofeenko, S. M. Lukyanov, L. N. Etmetchenko, Synthesis and certain properties of 1, 3-benzodioxanium salts, Zh. Org. Khim., 1976, 12, 2228–2233; reference and information extracted from SciFinder Scholar™, 2007.

    CAS  Google Scholar 

  39. H. Naeimi, L. Morida, Microwave-assisted direct ortho-acylation of phenol and naphthol derivatives by BF3(C2H5)2O, Bull. Chem. Soc. Jpn., 2005, 78, 284–287.

    Article  CAS  Google Scholar 

  40. J. S. Bradshaw, E. L. Loveridge, L. White, Photorearrangements of 2,4-disubstituted phenyl esters, J. Org. Chem., 1968, 33, 4127–4132.

    Article  CAS  Google Scholar 

  41. R. D. Burkhart, R. F. Boynton, J. C. Merrill, Diffusion and diffusion-controlled reactions involving alkyl radicals in solution, J. Am. Chem. Soc., 1971, 93, 5013–5017.

    Article  CAS  Google Scholar 

  42. E. Paul, R. M. Mazo, Calculations of the diffusion coefficients of n-alkanes, J. Chem. Phys., 1968, 48, 1405–1407.

    Article  CAS  Google Scholar 

  43. A. H. Alwattar, M. D. Lumb, and J. B. Birks, In Organic Molecular Photophysics, Eds. J. B. Birks, Wiley, New York, 1973, vol. 1, p. 403.

    CAS  Google Scholar 

  44. R. Nakagaki, M. Hiramatsu, T. Watanabe, Y. Tanimoto, S. Nagakura, Magnetic isotope and external magnetic field effects upon the photo-Fries rearrangement of 1-naphthyl acetate, J. Phys. Chem., 1985, 89, 3222–3226.

    Article  CAS  Google Scholar 

  45. A. H. Alwattar, M. D. Lumb, and J. B. Birks, in Organic Molecular Photophysics, Eds, J. B. Birk, Wiley, New York, 1973, vol. 1, p 403.

  46. Provided by Auguslab 4.0.1 9, Copyright ©1997–2004 Thompson and Planaria Software LLC.

  47. C. Cui, X. Wang, R. G. Weiss, Investigation of the photo-Fries rearrangements of two 2-naphthyl alkanoates by experiment and theory. Comparison with the acid-catalyzed reactions, J. Org. Chem., 1996, 61, 1962–1974.

    Article  CAS  Google Scholar 

  48. V. Ramamurthy, Ed. Photochemistry in Organized and Constrained Media VCH, New York, 1991.

    Google Scholar 

  49. H. E. Zimmerman, I. V. Alabugin, W. Chen, Z. Zhu, Dramatic effects of crystal morphology on solid state reaction course; Control by crystal disorder; mechanistic and exploratory organic photochemistry, J. Am. Chem. Soc., 1999, 121, 11930–11931.

    Article  CAS  Google Scholar 

  50. D. E. Axelson, G. C. Levy, L. Mandelkern, A quantitative analysis of low-density (branched) polyethylenes by carbon-13 Fourier transform nuclear magnetic resonance at 67.9 MHz, Macromolecules, 1979, 12, 41–52.

    Article  CAS  Google Scholar 

  51. R. P. Quirk, and M. A. A. Alsamarraie, In Polymer Handbook, J. Brandrup, E. H. Immergut, Eds.; Wiley, New York, 1989 p V/15.

  52. D. W. Hadley, In Structure and Properties of Oriented Polymers, I. M. Ward, Ed.; Wiley, London, 1975; Ch. 9.

  53. W. Glenz, A. J. Peterlin, Infrared studies of highly drawn linear polyethylene, J. Macromol. Sci., Phys., 1970, 4, 473–489.

    Article  CAS  Google Scholar 

  54. P. J. Phillips, Mechanism of orientation of aromatic molecules by stretched polyethylene, Chem. Rev., 1990, 90, 425–436.

    Article  CAS  Google Scholar 

  55. Y. T. Jang, P. J. Phillips, E. W. Thulstrup, Some comments on the mechanism of orientation of organic solutes in stretched polyethylene, Chem. Phys. Lett., 1982, 93, 66–73.

    Article  CAS  Google Scholar 

  56. E. Meirovitch, ESR observations on stretching-induced molecular mobility and partitioning among sites in polyethylene films, J. Phys. Chem., 1984, 88, 2629–2635.

    Article  CAS  Google Scholar 

  57. J. Naciri, R. G. Weiss, New methods for the determination of dopant site distributions and dopant rates of diffusion in polymer films: emission from pyrenyl groups covalently attached to low-density polyethylene, Macromolecules, 1989, 22, 3928–3936.

    Article  CAS  Google Scholar 

  58. Z. He, G. S. Hammond, R. G. Weiss, New methods for the determination of dopant site distributions and dopant rates of diffusion in low-density polyethylene films with covalently attached anthryl groups: fluorescence quenching by N, N-dimethylaniline in unstretched, stretched, and swelled films, Macromolecules, 1992, 25, 1568–1575.

    Article  CAS  Google Scholar 

  59. R. M. Jenkins, G. S. Hammond, R. G. Weiss, Dopant site sizes and dopant rates of diffusion in low-density polyethylene films with covalently attached pyrenyl groups: fluorescence quenching by a homologous series of N, N-dialkylanilines in unstretched and stretched films, J. Phys. Chem., 1992, 96, 496–502.

    Article  CAS  Google Scholar 

  60. J. Konwerska-Hrabowska, The power of spectroscopic methods in the determination of the relative orientation of guest molecules in a stretched polyethylene (PE) matrix, Appl. Spectrosc., 1985, 39, 976–979.

    Article  CAS  Google Scholar 

  61. J. Michl, in Spectroscopy with polarized light: solute alignment by photoselection, in liquid crystals, polymers, and membranes, J. Michl, and E. W. Thulstrup, Eds, Deerfield Beach, FL, USA, VCH, 1986, Ch. 3.

  62. The van der Waals volumes of 1–4 were obtained by the QSAR property of Hyperchem 7.0 after geometry optimization using semi-empirical methods at the PM3 level.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Weiss.

Additional information

† This article was published as part of the themed issue in honour of Esther Oliveros.

‡ Permanent address: Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100080, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YZ., Weiss, R.G. Photoreactions of substituted o-cresyl acylates in cyclohexane and in polyethylene films. The influences of intra- and inter-molecular ‘crowding’ effects. Photochem Photobiol Sci 8, 916–925 (2009). https://doi.org/10.1039/b902109d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b902109d

Navigation