Skip to main content
Log in

Solvent effect on the UV/Vis absorption and fluorescence spectroscopic properties of berberine

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Spectral and photophysical properties of the alkaloid berberine (B) were studied in solvents with different solvent parameters, using UV/Vis absorption, emission and excitation spectroscopy. The absorption and emission maxima were found to be between 421–431 nm and 514–555 nm, respectively, leading to Stokes’ shifts between 4099 and 5735 cm−1. The fluorescence quantum yields varied between 10−2–10−4, depending on the solvent. Different solvent scales have been used to study the solvatochromism of B. Linear solvation energy relationships (LSER) proposed by Kamlet–Taft suggest that B is a molecule attractive as a probe for solvent polarity and hydrogen bonding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Freile, F. Giannini, G. Pucci, A. Sturniolo, L. Rodero, O. Pucci, V. Balzaretti, R. D. Enriz, Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla, Fitoterapia, 2003, 74, 702–705.

    Article  CAS  Google Scholar 

  2. B. K. Sarma, V. B. Pandey, G. D. Mishra, U. P. Singh, Antifungal activity of berberine iodide, a constituent of Fumaria indica, Folia Microbiol., 1999, 44, 164–166.

    Article  CAS  Google Scholar 

  3. J. L. Vennerstrom, J. K. Lovelace, V. B. Waits, W. L. Hanson, D. L. Klayman, Berberine derivatives as antileishmanial drugs, Antimicrob. Agents Chemother., 1990, 34, 918–921.

    Article  CAS  Google Scholar 

  4. C.-L. Kuo, C.-W. Chi, T.-Y. Liu, The anti-inflammatory potential of berberine in vitro and in vivo, Cancer Lett., 2004, 203, 127–137.

    Article  CAS  Google Scholar 

  5. C. W. Wright, S. J. Marshall, P. F. Russell, M. M. Anderson, J. D. Phillipson, G. C. Kirby, D. C. Warhurst, P. L. Schiff, Jr, In vitro antiplasmodial, antiamoebic and cytotoxic activities of some monomeric isoquinoline alkaloids, J. Nat. Prod., 2000, 63, 1638–1640.

    Article  CAS  Google Scholar 

  6. E. R. Correché, S. A. Andujar, R. R. Kurdelas, M. J. Gómez Lechón, M. L. Freile, R. D. Enriz, Antioxidant and cytotoxic activities of canadine: Biological effects and structural aspects, Bioorg. Med. Chem., 2008, 16, 3641–3651.

    Article  Google Scholar 

  7. G.-Q. Gong, Z.-X. Zong, Y.-M. Son, Spectrofluorometric determination of DNA and RNA with berberine, Spectrochim. Acta, Part A, 1999, 55, 1903–1907.

    Article  Google Scholar 

  8. M. L. Contreras, S. Rivas, R. Rozas, An approach to the mechanism of photooxidation of berberine under basic conditions, Heterocycles, 1984, 22, 101–106.

    Article  CAS  Google Scholar 

  9. J. J. Inbaraj, B. M. Kukielczak, P. Bilski, S. L. Sandvik, C. F. Chignell, Photochemistry and Photocytotoxicity of Alkaloids from Goldenseal (Hydrastis canadensis L.) 1. Berberine, Chem. Res. Toxicol., 2001, 14, 1529–1534.

    Article  CAS  Google Scholar 

  10. M. O. Iwunze, Media influence on the enhancement of the fluorescence of berberine hydrochloride, Monatsh. Chem., 2000, 131, 429–435.

    Article  CAS  Google Scholar 

  11. J.-S. Yu, F.-D. Wei, W. Gao, C.-C. Zhao, Thermodynamic study on the effects ofb-cyclodextrin inclusion with berberine, Spectrochim. Acta, Part A, 2002, 58, 249–256.

    Article  Google Scholar 

  12. E. M. Gálvez, M. Matt, V. L. Cebolla, F. Fernandes, L. Membrado, F. P. Cossío, R. Garriga, J. Vela, M. Hassan, Guermouche. General contribution of nonspecific interactions to fluorescence intensity, Anal. Chem., 2006, 78, 3699–3705.

    Article  Google Scholar 

  13. M. Megyesi, L. Biczók, Berberine alkaloid as a sensitive fluorescence probe for bile salt aggregates, J. Phys. Chem. B, 2007, 111, 5635–5639.

    Article  CAS  Google Scholar 

  14. C. Reichardt. Solvent and solvent effects in organic chemistry. Wiley-VCH, Weinheim, 2004.

    Google Scholar 

  15. M. J. Kamlet, J-L. M. Abboud, M. Abraham, R. W. Taft, Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, p*, a and b, and some methods for simplifying the generalized solvatochromic equation, J. Org. Chem., 1983, 48, 2877–2887.

    Article  CAS  Google Scholar 

  16. G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison, G. W. Robinson, Picosecond Fluorescence Studies of Xanthene Dyes, J. Am. Chem. Soc., 1977, 99, 4306–4311.

    Article  CAS  Google Scholar 

  17. B. Valeur. Molecular fluorescence. Principles and Applications. Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  18. M. I. Gutiérrez, S. G. Bertolotti, M. A. Biasutti, A. T. Soltermann, N. A. García, Quinones and hydroxyquinones as generators and quenchers of singlet molecular oxygen, Can. J. Chem., 1997, 75, 423–428.

    Article  Google Scholar 

  19. Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents, Chem. Soc. Rev., 1993, 22, 409–416.

    Article  CAS  Google Scholar 

  20. J. R. Lakowicz. Principles of Fluorescence Spectroscopy. Kluwer Academic Publishers, New York, 1999.

    Book  Google Scholar 

  21. P. Suppan, Solvatochromic shifts: The influence of the medium on the energy of electronic states, J. Photochem. Photobiol., A, 1990, 50, 293–330.

    Article  CAS  Google Scholar 

  22. F. P. Cossío, A. Arrieta, V. L. Cebolla, L. Membrado, M. P. Domingo, P. Henrion, J. Vela, Enhancement of fluorescence in thin-layer chromatography induced by the interaction between n-alkanes and an organic cation, Anal. Chem., 2000, 72, 1759–1766.

    Article  Google Scholar 

  23. F. P. Cossío, A. Arrieta, V. L. Cebolla, L. Membrado, J. Vela, R. Garriga, M. P. Domingo, Berberine cation: a fluorescent chemosensor for alkanes and other low-polarity compounds. An explanation of this phenomenon, Org. Lett., 2000, 2, 2311–2313.

    Article  Google Scholar 

  24. M. Megyesi, L. Biczók, Considerable fluorescence enhancement upon supramolecular complex formation between berberine and p-sulfonated calixarenes, Chem. Phys. Lett., 2006, 424, 71–76.

    Article  CAS  Google Scholar 

  25. M. Megyesi, L. Biczók, I. Jablonksi, Highly sensitive fluorescence response to inclusion complex formation of berberine alkaloid with cucurbit[7]uril, J. Phys. Chem. C, 2008, 112, 3410–3416.

    Article  CAS  Google Scholar 

  26. M. Megyesi, L. Biczók, Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid, Chem. Phys. Lett., 2007, 447, 247–251.

    Article  CAS  Google Scholar 

  27. Y. Marcus, G. Hefter, Ion Pairing, Chem. Rev., 2006, 106, 4585–4621.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Isela Gutiérrez.

Additional information

This article was published as part of the themed issue in honour of Esther Oliveros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, M.S., Freile, M.L. & Gutiérrez, M.I. Solvent effect on the UV/Vis absorption and fluorescence spectroscopic properties of berberine. Photochem Photobiol Sci 8, 970–974 (2009). https://doi.org/10.1039/b822363g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b822363g

Navigation