Skip to main content
Log in

Wavelength and solvent independent photochemistry: the electrocyclic ring-closure of indolylfulgides

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A wavelength and solvent dependent study of a photochromic indolylfulgide is presented. The ring-closure reaction is characterized using stationary and time-resolved spectroscopy with femtosecond time resolution. After excitation into the first excited singlet state (S1) the photoprocesses proceed on ultrafast timescales (0.3–0.45 ps) in both polar and non-polar solvents. Excitation into higher electronic states results in similar reaction kinetics as found for S1 excitation. A simple kinetic scheme can be established for the photoprocesses under all different experimental conditions: as expected from organic textbooks neither the solvent surroundings nor the excitation wavelength strongly alter the reaction scheme. The experimental study demonstrates that the ring-closure reaction of photochromic indolylfulgides can be considered as a very robust photoprocess: this fact may lead to a great variety of different applications where the reaction dynamics of the molecular switch are not disturbed by any surrounding effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Tamai and H. Miyasaka, Ultrafast dynamics of photochromic systems, Chem. Rev., 2000, 100, 1875–1890.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Yokoyama, Fulgides for memories and switches, Chem. Rev., 2000, 100, 1717–1739.

    Article  CAS  PubMed  Google Scholar 

  3. F. O. Koller, W. J. Schreier, T. E. Schrader, S. Malkmus, C. Schulz, S. Dietrich, K. Rück-Braun and M. Braun, Ultrafast ring-closure reaction of photochromic indolylfulgimides studied with UV-pump - IR-probe spectroscopy, J. Phys. Chem. A, 2008, 112, 210–214.

    Article  CAS  PubMed  Google Scholar 

  4. B. Heinz, S. Malkmus, S. Laimgruber, S. Dietrich, C. Schulz, K. Rück-Braun, M. Braun, W. Zinth and P. Gilch, Comparing a Photo-induced Pericyclic Ring Opening and Closure: Differences in the Excited State Pathways, J. Am. Chem. Soc., 2007, 129, 8577–8584.

    Article  CAS  PubMed  Google Scholar 

  5. T. Brust, S. Draxler, S. Malkmus, C. Schulz, M. Zastrow, K. Rück-Braun, W. Zinth and M. Braun, Ultrafast dynamics and temperature effects on the quantum efficiency of the ring-opening reaction of a photochromic indolylfulgide, J. Mol. Liq., 2008, 141, 137–139.

    Article  CAS  Google Scholar 

  6. S. Malkmus, F. O. Koller, B. Heinz, W. J. Schreier, T. E. Schrader, W. Zinth, C. Schulz, S. Dietrich, K. Rück-Braun and M. Braun, Ultrafast ring opening reaction of a photochromic indolyl-fulgimide, Chem. Phys. Lett., 2006, 417, 266–271.

    Article  CAS  Google Scholar 

  7. S. Malkmus, F. O. Koller, S. Draxler, T. E. Schrader, W. J. Schreier, T. Brust, J. A. DiGirolamo, W. J. Lees, W. Zinth and M. Braun, All-optical operation cycle on molecular bits with 250-GHz clock-rate based on photochromic fulgides, Adv. Funct. Mater., 2007, 17, 3657–3662.

    Article  CAS  Google Scholar 

  8. M. Irie, Diarylethenes for memories and switches, Chem. Rev., 2000, 100, 1685–1716.

    CAS  PubMed  Google Scholar 

  9. R. B. Woodward and R. Hoffmann, Conservation of Orbital Symmetry, Angew. Chem. Int. Ed., 1969, 8, 781–853.

    Article  CAS  Google Scholar 

  10. W. Fuss, W. E. Schmid and S. A. Trushin, Time-resolved dissociative intense-laser field ionization for probing dynamics: Femtosecond photochemical ring opening of 1,3-cyclohexadiene, J. Chem. Phys., 2000, 112, 8347–8362.

    Article  CAS  Google Scholar 

  11. S. Pullen, L. A. Walker, B. Donovan and R. J. Sension, Femtosecond Transient Absorption Study of the Ring-Opening Reaction of 1,3-Cyclohexadiene, Chem. Phys. Lett., 1995, 242, 415–420.

    Article  CAS  Google Scholar 

  12. A. Hofmann, R. de Vivie-Riedle, Quantum dynamics of photoexcited cyclohexadiene introducing reactive coordinates, J. Chem. Phys., 2000, 112, 5054–5059.

    Article  CAS  Google Scholar 

  13. D. Geppert, R. de Vivie-Riedle, Control strategies for reactive processes involving vibrationally hot product states, J. Photochem. Photobiol. A-Chem., 2006, 180, 282–288.

    Article  CAS  Google Scholar 

  14. M. Seibold and H. Port, Mid-infrared recognition of the reversible photoswitching of fulgides, Chem. Phys. Lett., 1996, 252, 135–140.

    Article  CAS  Google Scholar 

  15. T. E. Schrader, W. J. Schreier, T. Cordes, F. O. Koller, G. Babitzki, R. Denschlag, C. Renner, S. L. Dong, M. Löweneck, L. Moroder, P. Tavan and W. Zinth, Light triggered β-hairpin folding and unfolding, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 15729–15734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Bouas-Laurent, H. Dürr, Organic photochromism, Pure Appl. Chem., 2001, 73, 639–665.

    Article  CAS  Google Scholar 

  17. M. A. Wolak, C. J. Thomas, N. B. Gillespie, R. R. Birge and W. J. Lees, Tuning the optical properties of fluorinated indolylfulgimides, J. Org. Chem., 2003, 68, 319–326.

    Article  CAS  PubMed  Google Scholar 

  18. H. Port, P. Gärtner, M. Hennrich, I. Ramsteiner, T. Schöck, Ultrafast photochromic reactions of fulgide photoswitches, Mol. Cryst. Liq. Cryst., 2005, 430, 15–21.

    Article  CAS  Google Scholar 

  19. F. Renth, M. Foca, A. Petter and F. Temps, Ultrafast transient absorption spectroscopy of the photo-induced Z-E isomerization of a photochromic furylfulgide, Chem. Phys. Lett., 2006, 428, 62–67.

    Article  CAS  Google Scholar 

  20. F. O. Koller, W. J. Schreier, T. E. Schrader, A. Sieg, S. Malkmus, C. Schulz, S. Dietrich, K. Rück-Braun, W. Zinth and M. Braun, Ultrafast structural dynamics of photochromic indolylfulgimides studied by vibrational spectroscopy and DFT calculations, J. Phys. Chem. A, 2006, 110, 12769–12776.

    Article  CAS  PubMed  Google Scholar 

  21. S. Draxler, T. Brust, S. Malkmus, F. O. Koller, B. Heinz, S. Laimgruber, C. Schulz, S. Dietrich, K. Rück-Braun, W. Zinth and M. Braun, Ultrafast reaction dynamics of the complete photo cycle of an indolylfulgimide studied by absorption, fluorescence and vibrational spectroscopy, J. Mol. Liq., 2008, 141, 130–136.

    Article  CAS  Google Scholar 

  22. D. Geppert, L. Seyfarth, R. de Vivie-Riedle, Laser control schemes for molecular switches, Appl. Phys. B-Lasers Opt., 2004, 79, 987–992.

    Article  CAS  Google Scholar 

  23. Y. Ishibashi, M. Murakami, H. Miyasaka, S. Kobatake, M. Irie and Y. Yokoyama, Laser Multiphoton-Gated Photochromic Reaction of a Fulgide Derivative, J. Phys. Chem. C, 2007 111, 2730–2737.

    Article  CAS  Google Scholar 

  24. T. Cordes, S. Malkmus, J. A. DiGirolamo, W. J. Lees, A. Nenov, R. de Vivie-Riedle, M. Braun and W. Zinth, Accelerated and Efficient Photochemistry from Higher Excited Electronic States in Fulgide Molecules, J. Phys. Chem. A, 2008 112, 13364–13371.

    Article  CAS  PubMed  Google Scholar 

  25. M. B. Smith, and J. March, March’s Advanced Organic Chemistry, Wiley-Interscience, New York, 5 edn., 2001.

    Google Scholar 

  26. Y. Yokoyama and K. Takahashi, Trifluoromethyl-substituted photochromic indolylfulgide. A remarkably durable fulgide towards photochemical and thermal treatments, Chem. Lett., 1996, 1037–1038.

    Google Scholar 

  27. T. Cordes, D. Weinrich, S. Kempa, K. Riesselmann, S. Herre, C. Hoppmann, K. Rück-Braun and W. Zinth, Hemithioindigo-based photoswitches as ultrafast light trigger in chromopeptides, Chem. Phys. Lett., 2006, 428, 167–173.

    Article  CAS  Google Scholar 

  28. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein and W. Zinth, Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR, Appl. Phys. B-Lasers Opt., 2000, 71, 457–465.

    Article  CAS  Google Scholar 

  29. R. Huber, H. Satzger, W. Zinth and J. Wachtveitl, Noncollinear optical parametric amplifiers with output parameters improved by the application of a white light continuum generated in CaF2, Opt. Commun., 2001, 194, 443–448.

    Article  CAS  Google Scholar 

  30. M. Seel, E. Wildermuth and W. Zinth, A multichannel detection system for application in ultra-fast spectroscopy, Meas. Sci. Technol., 1997, 8, 449–452.

    Article  Google Scholar 

  31. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York, 1986.

    Google Scholar 

  32. M. A. Wolak, R. C. Finn, R. S. Rarig, C. J. Thomas, R. P. Hammond, R. R. Birge, J. Zubieta and W. J. Lees, Structural properties of a series of photochromic fluorinated indolyl-fulgides, Acta Cryst. C, 2002, 58, o389–o393.

    Article  Google Scholar 

  33. M. Kasha, Characterization of Electronic Transitions in Complex Molecules, Farad. Disc., 1950, 14–19.

    Google Scholar 

  34. M. L. Horng, J. A. Gardecki, A. Papazyan and M. Maroncelli, Subpicosecond Measurements of Polar Solvation Dynamics - Coumarin-153 Revisited, J. Phys. Chem., 1995 99, 17311–17337.

    CAS  Google Scholar 

  35. K. Iwata and H. Hamaguchi, Microscopic Mechanism of Solute − Solvent Energy Dissipation Probed by Picosecond Time-Resolved Raman Spectroscopy, J. Phys. Chem. A, 1997 101, 632–637.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordes, T., Herzog, T.T., Malkmus, S. et al. Wavelength and solvent independent photochemistry: the electrocyclic ring-closure of indolylfulgides. Photochem Photobiol Sci 8, 528–534 (2009). https://doi.org/10.1039/b817627b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b817627b

Navigation