Skip to main content
Log in

In vitro and in vivo evaluation of Radachlorin® sensitizer for photodynamic therapy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This paper reports the evaluation of a new photosensitizer, Radachlorin® in comparison with one of its well known components but used solely, Chlorin e6. The photodynamic properties, cell uptake and localisation of the 2drugs were compared.In vitro studies were conducted on human adenocarcinoma cells (HT-29) and lung carcinoma cell line (A549). Both dyes showed an absorption maximum between 640 and 650 nm, that were enhanced by serum, with a shifted maximum at 661 nm.In vitro, phototoxicities of Radachlorin® and Chlorin e6 were nearly identical for HT29 and A549 cells. However, Radachlorin® reached its optimal LD50 sooner (0.59 μg ml−1 for 3 h incubation followed by 20 J cm−2 of 664 nm light (0.02 W cm−2)) than Chlorin e6 (0.60 μg ml−1 for 4 h incubation). For in vivo studies, Swiss athymic mice were grafted with human lung carcinoma of the line A549 15 days before intravenous photosensitizer injection. Fluorescence was recorded through an optical fibre spectrofluorimeter using the 666 nm peak for detection. Maximum Radachlorin® fluorescence in tumor was observed 2 h after injection (1412 ± 313 AU). Selectivity was expressed by the calculated tumor-to-skin and tumor-to-muscle ratios. Maximum ratios (1.45 ± 0.14 for tumor-to-skin and 1.95 ± 0.29 tumor-to-muscle) were observed 7 h after injection with Radachlorin. Maximal Chlorin e6 fluorescence was observed 1 h (shortest time interval measured) after injection in all organs and highest tumor-to-muscle ratio (2.56 ± 0.97) 8 h after injection. Chlorin e6 fluorescence in skin was always at least equivalent to tumor fluorescence. Complete response of grafted tumor was achieved (no recurrence observed during 15 days) after 20 mg kg−1 IV injection and 200 J cm−2 irradiation (0.3 W cm−2) with bothdrugs. Optimal delays between injection and light delivery were between 1 and 7 h with Radachlorin® and 3 h for Chlorin e6 but severe adverse effects were noted for bothdrugs whendrug–light intervals were shorter than 3 h. This suggests that clinical use would be easier with Radachlorin® than Chlorin e6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s Modified Eagle’s Medium

EDTA:

Ethylenediaminetetraacetic acid

FCS:

Foetal calf serum

LD-50, LD-90:

Sensitizer dose required for 50 or 90% cell kill

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PBS:

Phosphate-buffered saline solution

PDT:

Photodynamic therapy

RPMI:

Roswell Park Memorial Institute

References

  1. S. Johnson, F. N. Johnson, Eds., Reviews in contemporary Pharmacotherapy: Photodynamic Therapy, Marius Press, 10 1999.

    Google Scholar 

  2. K. Iwai, Y. Ichihara, S. Kimura, H. Rai, Y. Akatsuka and K. Suzuki, Therapeutic effect of Chlorin e6Na as a new photosensitizing agent in Photodynamic Therapy of mouse tumor, J. Clin. Nutr., 1989, 6, 117–125.

    CAS  Google Scholar 

  3. J. S. Nelson, W. G. Roberts and M. W. Berns, In vivo studies on the utilization of mono-L-aspartyl chlorin (NPe6) for photodynamic therapy, Cancer Res., 1987, 47, 4681–4685.

    CAS  PubMed  Google Scholar 

  4. Peng. Qian, J. F. Evensen, C. Rimington and J. Moan, A comparison of different photosensitizing dyes with respect to uptake C3H-tumors and tissues of mice, Cancer Lett., 1987, 36, 1–10.

    Article  CAS  Google Scholar 

  5. H. Mojzisova, S. Bonneau, C. Vever-Bizet and D. Brault, The pH-dependent distribution of the photosensitizer chlorin e6 among plasma proteins and membranes: a physico-chemical approach, Biochim Biophys. Acta, 2007, 1768, 366–374.

    Article  CAS  Google Scholar 

  6. G. A. Kostenich, I. N. Zhuravkin and E. A. Zhavrid, Experimental grounds for using chlorin e6 in the photodynamic therapy of malignant tumors, J. Photochem. Photobiol. B, 1994, 22, 211–217.

    Article  CAS  Google Scholar 

  7. A. B. Uzdensky, O. Y. Dergacheva, A. A. Zhavoronkova, A. V. Reshetnikov and G. V. Ponomarev, Photodynamic effect of novel chlorin e6 derivatives on a single nerve cell, Life Sci., 2004, 74, 2185–2197.

    Article  CAS  Google Scholar 

  8. A. V. Reshetnikov, I. D. Zalevsky, J. V. Kemov, A. V. Ivanov, A. V. Karmenyan, A. T. Gradjushko, V. P. Laptev, N. P. Neugodova, O. Y. Abakumova, V. A. Privalov, A. V. Lappa, V. A. Romanov, Russ. Pat. 2183956, 2001; US Pat. 6 969 765, 2005.

    Google Scholar 

  9. S. M. Bae, Y. W. Kim, J. M. Lee, S. E. Namkoong, S. J. 8 Han, J. K. Kim, C. H. Lee, H. J. Chun, H. S. Jin and W. S. Ahn, Photodynamic Effects of Radachlorin(R) on Cervical Cancer Cells, Cancer Res. Treat., 2004, 36, 389–394.

    Article  Google Scholar 

  10. D. Olivier, M. A. Poincelot, S. Douillard, C. Lefevre, J. Moureau, Y. Ferandin, K. Bettayeb, Z. Xiao, P. Magiatis, L. Skaltsounis, L. Meijer and T. Patrice, Photoreactivity of Indirubin Derivatives, Photochem. Photobiol. Sci., 2008, 7, 228–236.

    Article  Google Scholar 

  11. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods., 1983, 65, 55–63.

    Article  CAS  Google Scholar 

  12. S. Douillard, D. Olivier and T. Patrice, In vitro evaluation of Radachlorin® sensitizer for photodynamic therapy, J. Photochem. Photobiol. B, 2008, submitted

    Google Scholar 

  13. L. Morlet, V. Vonarx, M. T. Foultier, A. Gouyette, C. Stewart, P. Lenz and T. Patrice, In vitro and in vivo spectrofluorometry of a water-soluble meta-(tetrahydroxyphenyl)chlorin (m-THPC) derivative, J. Photochem. Photobiol. B, 1997, 39, 249–257.

    Article  CAS  Google Scholar 

  14. B. Cunderlikova, L. Gangeskar and J. Moan, Acid-base properties of chlorin e6: relation to cellular uptake, J. Photochem. Photobiol. B, 1999, 53, 81–90.

    Article  CAS  Google Scholar 

  15. F. Vargas, Y. Díaz, V. Yartsev, A. Marcano and A. Lappa, Photophysical properties of novel PDT photosensitizer Radachlorin in different media, CIEN, 2004, 12, 70–77.

    CAS  Google Scholar 

  16. R. M. Barone, P. Calabro-Jones, T. N. Thomas, T. R. Sharp and J. E. Byfield, Surgical adjuvant therapy in colon carcinoma: a human tumor spheroid model for evaluating radiation sensitizing agents, Cancer, 1981, 47, 2349–2357.

    Article  CAS  Google Scholar 

  17. J. Seidenfeld and W. S. Sprague, Comparisons between sensitive and resistant human tumor cell lines regarding effects of polyamine depletion on chloroethylnitrosourea efficacy, Cancer Res., 1990, 50, 521–526.

    CAS  PubMed  Google Scholar 

  18. T. Lesuffleur, S. Violette, I. Vasile-Pandrea, E. Dussaulx, A. Barbat, M. Muleris and A. Zweibaum, Resistance to high concentrations of methotrexate and 5-fluorouracil of differentiated HT-29 colon-cancer cells is restricted to cells of enterocytic phenotype, Int. J. Cancer, 1998, 76, 383–392.

    Article  CAS  Google Scholar 

  19. W. Matthews, W. Rizzoni, J. Mitchell, A. Russo and H. Pass, In vitro photodynamic therapy of human lung cancer, J. Surg. Res., 1989, 47, 276–281.

    Article  CAS  Google Scholar 

  20. J. Saczko, J. Kulbacka, A. Chwilkowska, M. Lugowski and T. Banas, Levels of lipid peroxidation in A549 cells after PDT in vitro, Rocz. Akad. Med. Bialymst., 2004, 49(Suppl 1), 82–84.

    CAS  PubMed  Google Scholar 

  21. H. Kato, K. Furukawa, M. Sato, T. Okunaka, Y. Kusunoki, M. Kawahara, M. Fukuoka, T. Miyazawa, T. Yana, K. Matsui, T. Shiraishi and H. Horinouchi, Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung, Lung Cancer, 2003, 42, 103–111.

    Article  Google Scholar 

  22. L. p. Toschi, F. p. Cappuzzo and P. A. p. Janne, Evolution and future perspectives in the treatment of locally advanced non-small cell lung cancer, Ann. Oncol., Suppl., 2007, 150–155.

    Google Scholar 

  23. A. L. Chan, M. Juarez, R. Allen, W. Volz and T. Albertson, Pharmacokinetics and clinical effects of mono-L-aspartyl chlorin e6 (NPe6) photodynamic therapy in adult patients with primary or secondary cancer of the skin and mucosal surfaces, Photodermatol. Photoimmunol. Photomed., 2005, 21, 72–78.

    Article  CAS  Google Scholar 

  24. S. V. Sheleg, E. A. Zhavrid, T. V. Khodina, G. A. Kochubeev, Y. P. Istomin, V. N. Chalov and I. N. Zhuravkin, Photodynamic therapy with chlorin e(6) for skin metastases of melanoma, Photodermatol. Photoimmunol. Photomed., 2004, 20, 21–26.

    Article  CAS  Google Scholar 

  25. T. W. Wong, K. Aizawa, I. Sheyhedin, C. Wushur and H. Kato, Pilot study of topical delivery of mono-L-aspartyl chlorin e6 (NPe6): implication of topical NPe6-photodynamic therapy, J. Pharmacol. Sci., 2003, 93, 136–142.

    Article  CAS  Google Scholar 

  26. S. W. Taber, V. H. Fingar, C. T. Coots and T. J. Wieman, Photodynamic therapy using mono-L-aspartyl chlorin e6 (Npe6) for the treatment of cutaneous disease: a Phase I clinical study, Clin. Cancer Res., 1998, 4, 2741–2746.

    CAS  PubMed  Google Scholar 

  27. R. K. Pandey, D. A. Bellnier, K. M. Smith and T. J. Dougherty, Chlorin and porphyrin derivatives as potential photosensitizers in photodynamic therapy, Photochem. Photobiol., 1991, 53, 65–72.

    Article  CAS  Google Scholar 

  28. R. K. Pandey, A. B. Sumlin, S. Constantine, M. Aoudla, W. R. Potter, D. A. Bellnier, B. W. Henderson, M. A. Rodgers, K. M. Smith and T. J. Dougherty, Alkyl ether analogs of chlorophyll-a derivatives: Part 1. Synthesis, photophysical properties and photodynamic efficacy, Photochem. Photobiol., 1996, 64, 194–204.

    Article  CAS  Google Scholar 

  29. K. Aizawa, T. Okunaka, T. Ohtani, H. Kawabe, Y. Yasunaka, S. O’Hata, N. Ohtomo, K. Nishimiya, C. Konaka and H. Kato, Localization of mono-L-aspartyl chlorin e6 (NPe6) in mouse tissues, Photochem. Photobiol., 1987, 46, 789–793.

    Article  CAS  Google Scholar 

  30. V. A. Privalov, A. V. Lappa, O. V. Seliverstov, A. B. Faizrakhmanov, N. N. Yarovoy, E. V. Kochneva, M. V. Evnevich, A. S. Anikina, A. V. Reshetnicov, I. D. Zalevsky, Y. V. Kemov, in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XI, ed. T. J. Dougherty, SPIE, 2002, pp. 178–89.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Patrice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douillard, S., Olivier, D. & Patrice, T. In vitro and in vivo evaluation of Radachlorin® sensitizer for photodynamic therapy. Photochem Photobiol Sci 8, 405–413 (2009). https://doi.org/10.1039/b817175k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b817175k

Navigation