Skip to main content

Advertisement

Log in

A redshifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bioluminescence imaging has evolved as a powerful tool for monitoring biological processesin vivo. As transmission efficiency of light through tissue increases greatly for wavelengths above 600 nm we examined whether a redshifted codon-optimized firefly luciferase (λmax = 615 nm) could be successfully employed as a sensitive reporter in mammalian cells. To this end, unmodified codon-optimized luciferase (λmax = 557 nm) as well as the red-emitting S284T mutant luciferase were expressed simultaneously in human glioma cellsin vitro as well as in quadriceps muscles of mice in vivo. We show here that activity of the redshifted enzyme in human glioma cell culture approached approximately one-fourth of that seen with the unmodified enzyme. In contrast, light emission by the red-emitting luciferase in vivo was generally more efficient than that produced by its unmodified counterpart, most likely due to reduced absorption of red light by tissue. The mean ratio of light emission produced by the redshifted luciferase to that of the unmodified enzymein vivo was ~3. Application of this new redshifted luciferase together with other optical reporters may be of considerable importance to biological research as it allows for imaging of deeper tissues as well as simultaneous monitoring of two molecular events in vitro and in vivo if appropriate filter sets are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Masuda, H. J. Okano, T. Maruyama, Y. Yoshimura, H. Okano and Y. Matsuzaki, In vivo imaging in humanized mice Curr. Top. Microbiol. Immunol. 2008 324 179–96.

    CAS  PubMed  Google Scholar 

  2. Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya and H. Akiyama, Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission Nat. Photonics 2008 2 44–47.

    Article  CAS  Google Scholar 

  3. L. H. Naylor, Reporter gene technology: the future looks bright Biochem. Pharmacol. 1999 58 749–57.

    Article  CAS  Google Scholar 

  4. D. J. Groskreutz, B. A. Sherf, K. V. Wood and E. T. Schenborn, Increased expression and convenience with the new pGL3 luciferase reporter vectors Promega Notes 1995 50 2–6.

    Google Scholar 

  5. C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson and D. A. Benaron, Photonic detection of bacterial pathogens in living hosts Mol. Microbiol. 1995 18 593–603.

    Article  CAS  Google Scholar 

  6. H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice and C. H. Contag, Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo J. Biomed. Opt. 2005 10 41210.

    Article  Google Scholar 

  7. B. W. Rice, M. D. Cable and M. B. Nelson, In vivo imaging of light-emitting probes J. Biomed. Opt. 2001 6 432–40.

    Article  CAS  Google Scholar 

  8. B. R. Branchini, T. L. Southworth, N. F. Khattak, E. Michelini and A. Roda, Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications Anal. Biochem. 2005 345 140–8.

    Article  CAS  Google Scholar 

  9. N. Kajiyama and E. Nakano, Isolation and characterization of mutants of firefly luciferase which produce different colors of light Protein Eng. 1991 4 691–3.

    Article  CAS  Google Scholar 

  10. B. F. Eames, D. A. Benaron, D. K. Stevenson and C. H. Contag, Construction and characterization of a red-emitting luciferase SPIE 1999 3600 36–39.

    CAS  Google Scholar 

  11. T. Arslan, S. V. Mamaev, N. V. Mamaeva and S. M. Hecht, Structurally modified firefly luciferase. Effects of amino acid substitution at position 286 J. Am. Chem. Soc. 1997 119 10877–87.

    Article  CAS  Google Scholar 

  12. B. R. Branchini, D. M. Ablamsky, M. H. Murtiashaw, L. Uzasci, H. Fraga and T. L. Southworth, Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications Anal. Biochem. 2007 361 253–62.

    Article  CAS  Google Scholar 

  13. N. K. Tafreshi, S. Hosseinkhani, M. Sadeghizadeh, M. Sadeghi, B. Ranjbar, H. Naderi-Manesh, The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase J. Biol. Chem. 2007 282 8641–7.

    Article  CAS  Google Scholar 

  14. E. Shapiro, C. Lu and F. Baneyx, A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications Protein Eng. Des. Sel. 2005 18 581–7.

    Article  CAS  Google Scholar 

  15. A. Söling, C. Theiss, S. Jungmichel and N. G. Rainov, A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma Genet. Vaccines Ther. 2004 2 7–21.

    Article  Google Scholar 

  16. N. K. Tafreshi, M. Sadeghizadeh, R. Emamzadeh, B. Ranjbar, H. Naderi-Manesh and S. Hosseinkhani, Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases Biochem. J. 2008 412 27–33.

    Article  CAS  Google Scholar 

  17. S. V. Mamaev, A. L. Laikhter, T. Arslan and S. M. Hecht, Firefly luciferase: alterations of the color of emitted light resulting from substitutions at position 286 J. Am. Chem. Soc. 1996 118 7243–4.

    Article  CAS  Google Scholar 

  18. J. A. Wolff and V. Budker, The mechanism of naked DNA uptake and expression Adv. Genet. 2005 54 3–20.

    CAS  PubMed  Google Scholar 

  19. J. A. Wolff, J. J. Ludtke, G. Acsadi, P. Williams and A. Jani, Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle Hum. Mol. Genet. 1992 1 363–9.

    Article  CAS  Google Scholar 

  20. A. Kawase, T. Nomura, T. K. Yasuda, N. Kobayashi, M. Hashida and Y. Takakura, Disposition and gene expression characteristics in solid tumors and skeletal muscle after direct injection of naked plasmid DNA in mice J. Pharm. Sci. 2003 92 1295–304.

    Article  CAS  Google Scholar 

  21. H. L. Davis, R. G. Whalen and B. A. Demeneix, Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression Hum. Gene Ther. 1993 4 151–9.

    Article  Google Scholar 

  22. M. Manthorpe, F. Cornefert-Jensen, J. Hartikka, J. Felgner, A. Rundell, M. Margalith and V. Dwarki, Gene therapy by intramuscular injection of plasmid DNA: studies on firefly luciferase gene expression in mice Hum. Gene Ther. 1993 4 419–31.

    Article  CAS  Google Scholar 

  23. A. Bachmair, D. Finley and A. Varshavsky, In vivo half-life of a protein is a function of its amino-terminal residue Science 1986 234 179–86.

    Article  CAS  Google Scholar 

  24. J. F. Thompson, L. S. Hayes and D. B. Lloyd, Modulation of firefly luciferase stability and impact on studies of gene regulation Gene 1991 103 171–7.

    Article  CAS  Google Scholar 

  25. G. M. Leclerc, F. R. Boockfor, W. J. Faught and L. S. Frawley, Development of a destabilized firefly luciferase enzyme for measurement of gene expression Biotechniques 2000 29 590–8.

    Article  CAS  Google Scholar 

  26. J. E. Souren, F. A. Wiegant, R. Van Wijk, The role of hsp70 in protection and repair of luciferase activity in vivo; experimental data and mathematical modelling Cell Mol. Life Sci. 1999 55 799–811.

    Article  CAS  Google Scholar 

  27. J. A. Wolff, P. Williams, G. Acsadi, S. Jiao, A. Jani and W. Chong, Conditions affecting direct gene transfer into rodent muscle in vivo Biotechniques 1991 11 474–85.

    CAS  PubMed  Google Scholar 

  28. E. H. Moriyama, M. J. Niedre, M. T. Jarvi, J. D. Mocanu, Y. Moriyama, P. Subarsky, B. Li, L. D. Lilge and B. C. Wilson, The influence of hypoxia on bioluminescence in luciferase-transfected gliosarcoma tumor cells in vitro Photochem. Photobiol. Sci. 2008 7 675–80.

    Article  CAS  Google Scholar 

  29. S. Bhaumik, X. Z. Lewis and S. S. Gambhir, Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice J. Biomed. Opt. 2004 9 578–86.

    Article  CAS  Google Scholar 

  30. M. Otto-Duessel, V. Khankaldyyan, I. Gonzalez-Gomez, M. C. Jensen, W. E. Laug and M. Rosol, In vivo testing of Renilla luciferase substrate analogs in an orthotopic murine model of human glioblastoma Mol. Imaging 2006 5 57–64.

    Article  Google Scholar 

  31. E. Michelini, L. Cevenini, L. Mezzanotte, D. Ablamsky, T. Southworth, B. R. Branchini and A. Roda, Combining intracellular and secreted bioluminescent reporter proteins for multicolor cell-based assays Photochem. Photobiol. Sci. 2008 7 212–7.

    Article  CAS  Google Scholar 

  32. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen and M. S. Patterson, Spectrally resolved bioluminescence optical tomography Opt. Lett. 2006 31 365–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Söling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caysa, H., Jacob, R., Müther, N. et al. A redshifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging. Photochem Photobiol Sci 8, 52–56 (2009). https://doi.org/10.1039/b814566k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b814566k

Navigation