Skip to main content
Log in

Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Reflectance spectra from pink petals of Rhododendron indicum flowers showed absorption in the NIR (1470, 1930 and 2500 nm) due to water, in the visible (533 nm, due to anthocyanins) and in the UV (broad absorption due to phenolic compounds other than anthocyanins). A linear correlation between the remission function at 533 nm and the anthocyanin content in μmol per g fresh weight has been found, allowing non-destructive quantification of anthocyanins. The remission function could be obtained either from reflectance of a group of stacked petals (Kubelka–Munk theory) or through determination of the absorption and scattering coefficients following the Pile of Plates model. The intact petals have shown fluorescence emission in the blue (400–500 nm) and in the visible around 624 nm under UV excitation. The red emission was attributed to anthocyanins whereas blue emission was assigned to other phenolic compounds. On the basis of absorption and fluorescence measurements of crude and purified extracts from the petals, the last compounds could possibly be a mixture of flavonoids and hydroxycinnamic-type plant phenolics such as ferulic acid, chlorogenic acid or others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shiono, N. Matsugaki and K. Takeda, Structure of the blue cornflower pigment, Nature, 2005, 436, 791.

    Article  CAS  PubMed  Google Scholar 

  2. R. Brouillard and B. Delaporte, Chemistry of anthocyanins pigments. 2. Kinetic and thermodynamic study of proton transfer, hydration, and tautomeric reactions of malvidin 3-glucoside, J. Am. Chem. Soc, 1977, 99, 8461–8468.

    Article  CAS  Google Scholar 

  3. J. C. Lima, I. Abreu, R. Brouillard and A. L. Macanita, Kinetics of ultra-fast excited state proton transfer from 7-hydroxy-4-methylflavylium chloride to water, Chem. Phys. Lett., 1998, 298, 189–195.

    Article  CAS  Google Scholar 

  4. P. F. Moreira, L. Giestas, C. Yihwa, C. Vautier-Giongo, F. H. Quina, A. L. Macanita and J. C. Lima, Ground-and excited-state proton transfer in anthocyanins: from weak acids to superphotoacids, J. Phys. Chem. A., 2003, 107, 4203–4209.

    Article  CAS  Google Scholar 

  5. L. Chalker-Scott, Environmental significance of anthocyanins in plant stress responses, Photochem. Photobiol., 1999, 70, 1–9.

    Article  CAS  Google Scholar 

  6. M. N. Merzlyak and O. B. Chivkunova, Light-stress-induced pigments changes and evidence for anthocyanin photoprotection in apples, J. Photochem. Photobiol. B: Biol., 2000, 55, 155–163.

    Article  CAS  Google Scholar 

  7. S. D. Castellarin, A. Pfeiffer, P. Silvilotti, M. Degan, E. Peterlunger and G. Di Gaspero, Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit, Plant Cell Environ., 2007, 30, 1381–1399.

    Article  CAS  PubMed  Google Scholar 

  8. W. A. Hoch, E. L. Singsaas and B. H. McCown, Resorption Protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels, Plant Physiol., 2003, 133, 1296–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. S. J. Simmonds, Flavonoid-insect interactions: recent advances in our knowledge, Phytochemistry, 2003, 64, 21–30.

    Article  CAS  PubMed  Google Scholar 

  10. P. Bridle and C. F. Timberlake, Anthocyanins as natural food colours-selected aspects, Food Chem., 1997, 58, 103–109.

    Article  CAS  Google Scholar 

  11. P. J. Zarco-Tejada, C. A. Rueda and S. L. Ustin, Water content estimation in vegetation with MODIS reflectance data and model inversion methods, Remote Sens. Environ., 2003, 85, 109–124.

    Article  Google Scholar 

  12. F. M. Danson and P. Bowyer, Estimating live fuel moisture content from remotely sensed reflectance, Remote Sens. Environ., 2004, 92, 309–321.

    Article  Google Scholar 

  13. P. J. Zarco-Tejada, J. R. Miller, G. H. Mohammed and T. L. Noland, Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf–level, measurements and model simulation, Remote Sens. Environ., 2000, 74, 582–595.

    Article  Google Scholar 

  14. P. J. Zarco-Tejada, J. R. Miller, R. Pedrós, W. Verohef and M. Berger, FluorMODgui V3.0: A graphic user interface for the spectral simulation of leaf and canopy chlorophyll florescence, Comp. Geosci., 2006, 32, 577–591.

    Article  Google Scholar 

  15. G. Agati, P. Pinelli, S. Cortés Ebner, A. Romani, A. Cartelat and Z. G. Cerovic, Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy, J. Agric. Food Chem., 2005, 53, 1354–1363.

    Article  CAS  PubMed  Google Scholar 

  16. G. Agati, S. Meyer, P. Matteini and Z. G. Cerovic, Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method, J. Agric. Food Chem., 2007, 55, 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Gitelson, M. N. Merzlyak and O. B. Chivkunova, Optical properties and nondestructive estimation of anthocyanin content in plant leaves, Photochem. Photobiol., 2001, 74, 38–45.

    Article  CAS  PubMed  Google Scholar 

  18. M. N. Merzlyak, A. E. Solovchenko and A. A. Gitelson, Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit, Postharvest Biol. Technol., 2003, 27, 197–211.

    Article  CAS  Google Scholar 

  19. P. Juneau, P. Le Lay, B. Böddi, G. Samson and R. Popovic, Relationship between the structural and functional changes of the photosynthetic apparatus during chloroplast–chromoplast transition in flower bud of Lilium longiflorum, Photochem. Photobiol., 2002, 75, 377–381.

    Article  CAS  PubMed  Google Scholar 

  20. A. Mercuri, A. Sacchetti, L. De Benedetti, T. Schiva and S. Alberti, Green fluorescent flowers, Plant Sci., 2002, 162, 647–654.

    Article  Google Scholar 

  21. K. R. Markham, K. S. Gould and K. G. Ryan, Cytoplasmic accumulation of flavonoids in flower petals and its relevance to yellow flower colouration, Phytochemistry, 2001, 58, 403–413.

    Article  CAS  PubMed  Google Scholar 

  22. K. Yoshida, M. Mori, M. Kawachi, R. Okuno, K. Kameda and T. Kondo, A UV-B resistant polyacylated anthocyanin, HBA, from blue petals of morning glory, Tetrahedron Lett., 2003, 44, 7875–7880.

    Article  CAS  Google Scholar 

  23. N. Kouju, T. Takejiro and F. Seiichi, Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.), J. Hort. Sci. Biotech., 2006, 81, 728–734.

    Article  Google Scholar 

  24. J. M. R. C. Fernando and G. K. R. Senadeera, Natural anthocyanins as photosensitizers for dye-sensitized solar devices, Curr. Sci., 2008, 95, 663–666.

    CAS  Google Scholar 

  25. W. Wendlandt, amd H. Hecht, Reflectance Spectroscopy, eds. P. J. Elving, and I. M. Kolthoff, Interscience Publishers, New York, 1966.

  26. W. A. Allen and J. A. Richardson, Interaction of light with a plant canopy, J. Opt. Am., 1968, 58, 1023–1028.

    Article  Google Scholar 

  27. G. B. Cordon and M. G. Lagorio, Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients, Photochem. Photobiol. Sci., 2007, 6, 873–882.

    Article  CAS  PubMed  Google Scholar 

  28. L. Passarelli and L. Bruzone, Significance of floral colour and scent in three Solanum sect.Cyphomandropsis species (Solanaceae) with different floral rewards, Aust. J. Bot., 2004, 52, 659–667.

    Article  Google Scholar 

  29. G. B. Cordon and M. G. Lagorio, Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models, Photochem. Photobiol. Sci., 2006, 5, 735–740.

    Article  CAS  PubMed  Google Scholar 

  30. G. B. Cordon and M. G. Lagorio, Absorption and Scattering Coefficients: A Biophysical Chemistry Experiment Using Reflectance Spectroscopy, J. Chem. Educ., 2007, 7, 1167–1170.

    Article  Google Scholar 

  31. V. Hong and R. E. Wrolstad, Use of HPLC separation/photodiode array detection for characterization of anthocyanins, J. Agric. Food Chem., 1990, 38, 708–715.

    Article  CAS  Google Scholar 

  32. J. Ribera López, C. Ordorica Falomir and P. Wesche Ebeling, Changes in anthocyanin concentration in Lychee (Litchi chinensis Sonn.) pericarp during maturation, Food Chem., 1999, 65, 195–200.

    Article  Google Scholar 

  33. J. M. Kong, L. S. Chia, N. K. Goh, T. F. Chia and R. Brouillard, Analysis and biological activities of anthocyanins, Phytochemistry, 2003, 64, 923–933.

    Article  CAS  PubMed  Google Scholar 

  34. M. M. Giusti, L. E. Rodríguez-Saona and W. E. Wrolstad, Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin based anthocyanins, J. Agric. Food Chem., 1999, 47, 4631–4637.

    Article  CAS  PubMed  Google Scholar 

  35. F. Morales, Z. G. Cerovic and I. Moya, Time-resolved blue-green fluorescence of sugar beet (Beta vulgaris L.) leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis, Biochim. Biophys. Acta, 1996, 1273, 251–262.

    Article  Google Scholar 

  36. Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer and I. Moya, The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves, Plant Cell Environ., 2002, 25, 1663–1676.

    Article  CAS  Google Scholar 

  37. S. Kuwayama, S. Mori, M. Nakata, T. Godo and M. Nakano, Analyses of anthocyanidins and anthocyanins in flower petals of Lychnis senno and its related species (Caryophyllaceae), Bull. Facul. Agric. Niigata Uni., 2005, 58, 35–38.

    CAS  Google Scholar 

  38. A. Iriel, M. G. Lagorio, L. Dicelio and E. A. San Román, Photophysics of Supported Dyes: Phthalocyanine on Silanized Silica, Phys. Chem. Chem. Phys., 2002, 4, 224–231.

    Article  CAS  Google Scholar 

  39. F. Morales, Z. G. Cerovic and I. Moya, Time-resolved blue-green fluorescence of sugar beet leaves. Temperature-induced changes and consequences for the potential use of blue-green fluorescence as a signature for remote sensing of plants, Aust. J. Plant Physiol., 1998, 25, 325–334.

    Google Scholar 

  40. H. K. Lichtenthaler and J. Schweiger, Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants, J. Plant Physiol., 1998, 152, 272–282.

    Article  CAS  Google Scholar 

  41. C. Buschmann and H. K. Lichtenthaler, Principles and characteristics of multi-colour fluorescence imaging plants, J. Plant Physiol., 1998, 152, 297–314.

    Article  CAS  Google Scholar 

  42. M. Lang, F. Stober and H. K. Lichtenthaler, Fluorescence emission of plant leaves and plant constituents, Radiat. Environ. Biophys., 1991, 30, 333–347.

    Article  CAS  PubMed  Google Scholar 

  43. F. Morales, A. Cartelat, A. Álvarez-Fernández, I. Moya and Z. Cerovic, Time-resolved spectral studies of blue-green fluorescence of artichoke (Cynara cardunculus L. Var. Scolymus) leaves: Identification of chlorogenic acid as one of the major fluorophores and age-mediated changes, J. Agric. Food. Chem., 2005, 53, 9668–9678.

    Article  CAS  PubMed  Google Scholar 

  44. R. Dravent, B. Pliszka and T. Olszewska, Fluorescence properties of plant anthocyanin pigments. I. Fluorescence, of anthocyanins in Brassica oleracea L. extracts, J. Photochem. Photobiol. B: Biol., 1999, 50, 53–54.

    Article  Google Scholar 

  45. P. Ferreira da Silva, J. C. Lima, F. H. Quina and A. L. Macanita, Excited-stated electron transfer in anthocyanins and related flavynium salts, J. Phys. Chem. A, 2004, 108, 10133–10140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Gabriela Lagorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iriel, A., Lagorio, M.G. Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method. Photochem Photobiol Sci 8, 337–344 (2009). https://doi.org/10.1039/b814461c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b814461c

Navigation