Skip to main content
Log in

Dissolution and mineralization of ion exchange resins: differentiation between heterogeneous and homogeneous (photo-)Fenton processes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fenton and photo-Fenton processes lead under defined experimental conditions to the oxidative degradation and complete apparent dissolution of ion exchange resins (IER) based on copolymers of sulfonated styrene and divinylbenzene, as well as to the mineralization of the dissolved organic fragments. Using the optimal experimental design methodology (OED), the initial Fe(II)-concentration ([Fe(II)]0) was found to control the time needed to completely degrade the IER into soluble fragments, whereas the H2O2 concentration was of minor impact. The photo-Fenton process enhanced primarily the rate of mineralization compared to the dark reaction. The results of process modeling for Fenton and photo-Fenton processes, investigations on the evolution of sulfate (SO42-), CO2, formic and oxalic acids, as well as the comparison between results of photo-Fenton and VUV-photolysis experiments confirm: (i) the existence of two distinct Fenton processes taking place at the surface of the IER beads and in the aqueous bulk, (ii) the desulfonation as the reaction triggering the oxidative degradation and apparent dissolution of IER, (iii) the release of Fe(III) into the aqueous medium and its subsequent reduction, as well as the recycling of the Fe(II)-complexes at the surface of the IER, (iv) the low reactivity of HO generated in solution toward the solid organic substrate, and (v) the important effect of Fe(III)-complexation by oxalic acid. Results also support the hypothesis that formic and oxalic acids are of different origin, and their probing might prove useful for other degradation processes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Dorfner, Ion Exchangers, Walter de Gruyter, Berlin, New York, 1991.

    Book  Google Scholar 

  2. R. Bogoczek, E. Kociołek-Balawejder, Chemicznie aktywne kopolimery styreno-diwinylobenzenowe o siarkowych grupach funkcyjnych, Chemik, 1988, 1, 10–16.

    Google Scholar 

  3. International Atomic Energy Agency, 2004, Predisposal management of organic radioactive waste, Technical Reports Series, No. 427, Vienna, ISBN 92-0-103204-8.

  4. E. Kociołek-Balawejder and J. Surowiec, Zastosowanie reaktywnych polimerów w przemyśle na przykładzie produktów firmy Rohm and Haas, Przem. Chem., 2006, 85,7, 471–477.

    Google Scholar 

  5. A. Akelah and D. C. Sherington, Application of functionalized polymers in organic synthesis, Chem. Rev., 1981, 81, 557–587.

    Article  CAS  Google Scholar 

  6. A. A. Zagarodni, D. L. Kotova and V. F. Selemenev, Infrared spectroscopy of ion exchange resins: chemical deterioration of the resins, React. Funct. Polym., 2002, 53, 157–171.

    Article  Google Scholar 

  7. K. Kinoshita, M. Hirata and T. Yahata, Treatment of ion-exchange resins by fluidized bed incinerator equipped with copper oxide catalyst, J. Nucl. Sci. Technol., 1991, 28, 228–238.

    Article  CAS  Google Scholar 

  8. M. A. Dubois, J. F. Dozol, C. Nicotra, J. Serose and C. Massiani, Pyrolysis and incineration of cationic and anionic ion-exchange resins - Identification of volatile degradation compounds, J. Anal. Appl. Pyrolysis, 1995, 31, 129–140.

    Article  CAS  Google Scholar 

  9. U. K. Chun, K. Choi, K. H. Yang, J. K. Park and M. J. Song, Waste minimization pretreatment via pyrolysis and oxidative pyrolysis of organic ion exchange resin, Waste Management, 1998, 18, 183–196.

    Article  CAS  Google Scholar 

  10. R. S. Juang and T. S. Lee, Oxidative pyrolysis of organic ion exchange resins in the presence of metal oxide catalysts, J. Hazard. Mater., 2002, B92, 301–314.

    Article  Google Scholar 

  11. Y. Kabayasi, H. Matsuzuru, J. Akatsu and N. Moriyama, Acid digestion of radioactive combustible wastes. Use of hydrogen peroxide for acid digestion of ion exchange resins, J. Nucl. Sci. Technol., 1980, 17, 865–868.

    Article  Google Scholar 

  12. M. A. Dubios, J. F. Dozel, C. Massiani and M. Ambrosio, Reactivities of Polystyrenic polymers with supercritical water under nitrogen or air. Identification and formation of degradation compounds, Ing. Eng. Chem. Res., 1996, 35, 2743–2747.

    Article  Google Scholar 

  13. J. J. Pignatello, E. Oliveros and A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 2005, 36, 1–84; Erratum, 2007, 37(3), 273-275).

    Article  CAS  Google Scholar 

  14. W. Wood, Stability of sulfonated crosslinked ion exchange resin in hydrogen peroxide, J. Phys. Chem., 1957, 61, 832–832.

    Article  CAS  Google Scholar 

  15. L. S. Goldring, International Conference on the Theory and Practice of Ion Exchange, Churchill College, University of Cambrige, 1976, 7.1.–7.10.

    Google Scholar 

  16. X. Jian, T. Wu and G. Yun, A study of wet catalytic oxidation of radioactive spent ion exchange resin by hydrogen peroxide, Nucl. Safety, 1996, 37, 149–157.

    CAS  Google Scholar 

  17. P. A. Taylor, Destruction of ion-exchange resin in waste from the HFIR, T1, and T2 tanks using Fenton’s reagent, ORNL/TM-2002/197, Oak Ridge National Laboratory, Oak Ridge, ORNL/TM-2002/197.

  18. M. Kubota, Decomposition of a cation exchange resin with hydrogen peroxide, J. Radioanal. Chem., 1983, 78, 295–305.

    Article  CAS  Google Scholar 

  19. F. Haber and J. J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, J. Proc. Roy. Soc. London, Ser. A, 1934, 147, 332–351.

    CAS  Google Scholar 

  20. C. Walling, Fenton’s reagent revisited, Acc. Chem. Res., 1975, 8, 125–131.

    Article  CAS  Google Scholar 

  21. C. Walling, Intermediates in the reactions of Fenton type reagents, Acc. Chem. Res., 1998, 31, 155–157.

    Article  CAS  Google Scholar 

  22. O. Legrini, E. Oliveros and A. M. Braun, Photochemical processes for water treatment, Chem. Rev, 1993, 93, 671–698.

    Article  CAS  Google Scholar 

  23. N. R. Sylva, The hydrolysis of iron(III), Rev. Pure. Appl. Chem., 1972, 22, 115–130.

    Google Scholar 

  24. A. Safarzadeh-Amiri, J. R. Bolton and S. R. Cater, The use of iron in advanced oxidation technologies, J. Adv. Oxid. Technol., 1996, 1, 18–26.

    CAS  Google Scholar 

  25. H. R. Einsenhauer, Oxidation of phenolic wastes, J. Water Pollut. Contr. Fed, 1964, 36, 1116–1128.

    Google Scholar 

  26. H. Gallard, J. de Laat and B. Legube, Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions, Water Res., 1999, 33, 2929–2936.

    Article  CAS  Google Scholar 

  27. B. C. Faust, J. Hoigné, Photolysis of Fe(III)-hydroxyl complexes as sources of OH radicals in clouds, fog, and rain, Atmos. Environ., 1990, 24A, 79–89.

    Article  CAS  Google Scholar 

  28. S. H. Bossmann, E. Oliveros, S. Göb, S. Siegwart, E. P. Dahlen and L. Payawan, Jr., M. Straub, M. Wörner and A. M. Braun, New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reaction, J. Phys. Chem., 1998, A102, 5542–5550.

    Article  Google Scholar 

  29. C. A. Parker, Induced autoxidation of oxalate in relation to the photolysis of potassium ferrioxalate, Trans. Faraday Soc., 1954, 50, 1213–1221.

    Article  CAS  Google Scholar 

  30. A. M. Braun, M. -T. Maurette, and E. Oliveros, Photochemical Technology, Wiley, Chichester, 1992.

    Google Scholar 

  31. S. H. Bossmann, E. Oliveros, M. Kantor, S. Niebler, A. Bonfill, N. Shahin, M. Wörner and A. M. Braun, New insights into the mechanisms of the thermal Fenton reactions occurring using different iron(II)-complexes, Water Sci.Tech., 2004, 49, 75–80.

    Article  CAS  Google Scholar 

  32. J. Fernandez, J. Bandara, A. Lopez, Ph. Buffat and J. Kiwi, Photoassisted Fenton degradation of nonbiodegradable azo dye (Orange II) in Fe-free solutions mediated by cation transfer membranes, Langmuir, 1999, 15, 185–192.

    Article  CAS  Google Scholar 

  33. J. Feng, X. Hu and P. L. Yue, Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: a comparative study, Environ. Sci. Technol., 2004, 38, 5773–5778.

    Article  CAS  PubMed  Google Scholar 

  34. E. Oliveros, O. Legrini, M. Hohl, T. Müller and A. M. Braun, Industrial waste water treatment: large scale development of a light-enhanced Fenton reaction, Chem. Eng. Proc., 1997, 36, 397–405.

    Article  CAS  Google Scholar 

  35. A. I. Khuri, and J. A. Cornell, Response Surfaces, Designs and Analyses, Marcel Dekker, New York, 1987.

    Google Scholar 

  36. D. Rasch, L. R. Verdooren, and J. I. Gowers, Fundamentals in the Design and Analysis of Experiments and Surveys, Grundlagen der Planung und Auswertung von Versuchen und Erhebungen, Oldenbourg Wissenschaftsverlag, München, 1999.

    Google Scholar 

  37. S. Göb, E. Oliveros, S. H. Bossmann, A. M. Braun, C. A. O. do Nascimento and R. Guardani, Optimal experimental design and artificial neural networks applied to the photochemicallly enhanced Fenton reaction, Water Sci. Tech., 2001, 44, 339–345.

    Article  Google Scholar 

  38. A. M. Braun, L. Jakob, E. Oliveros, and C. A. Oller, de Nascimento, Up-scaling photochemical reactions, Adv. Photochem., ed. D. H. Volman, G. S. Hammond and D. C. Neckers, Wiley, New York, 1993, 18, pp. 235–313.

    Google Scholar 

  39. A. C. Atkinson, Optimum Experimental Design, Clarendon, Oxford, 1992.

    Google Scholar 

  40. G. Dumenil, G. Mattei, M. Sergent, J. C. Bertrand, M. Laget, R. Phan, Tan Luu, Application of a Doehlert experimental design to the optimization of microbial degradation of crude oil in sea water by continuous culture, Appl. Microbiol. Biotechnol., 1988, 27, 405–409.

    Article  CAS  Google Scholar 

  41. F. Benoit-Marquié, E. Costes-Puech, A. M. Braun, E. Oliveros, M. -T. Maurette, Photocatalytic degradation of 2,4-dihydroxybenzoic acid in water: efficiency optimization and mechanistic investigations, J. Photochem. Photobiol., A, 1997, 108, 65–71.

    Article  Google Scholar 

  42. E. Oliveros, O. Legrini, A. M. Braun, M. Hohl, T. Müller, Large scale development of a light-enhanced Fenton reaction by optimal experimental design, Water Sci. Technol., 1997, 35, 223–230.

    Article  CAS  Google Scholar 

  43. M. Zahorodna, R. Bogoczek, E. Oliveros, and A. M. Braun, Partial oxidation of ion exchange resins by the Fenton process for recycling purposes, in Récents Progrès en Génie des Procédés, SFGP, Paris, 94, 2000, 7.

    Google Scholar 

  44. M. Zahorodna, R. Bogoczek, E. Oliveros and A. M. Braun, Application of the Fenton process to the dissolution and mineralization of ion exchange resins, Catal. Today, 2007, 129, 2000–2006.

    Article  CAS  Google Scholar 

  45. NEMROD version 2002, LPRAI, B.P. no 7, Marseille - Le Merlan, 13311 Marseille Cédex 14, France.

  46. M. C. Gonzalez, E. Oliveros, M. Wörner and A. M. Braun, Vacuum-ultraviolet photolysis of aqueous reaction systems, J. Photochem. Photobiol., C, 2004, 5, 225–246.

    Article  CAS  Google Scholar 

  47. G. Heit and A. M. Braun, VUV photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions, Water Sci. Technol., 1997, 35, 25–30.

    Article  CAS  Google Scholar 

  48. B. Stöffler and G. Luft, Oxidative degradation of p-toluenesulfonic acid using hydrogen peroxide, Chemosphere, 1999, 38, 1035–1047.

    Article  PubMed  Google Scholar 

  49. R. Chen and J. J. Pignatello, Structure-activity study of electron-shuttle catalysis by quinones in the oxidation of aromatic compounds by the Fenton reaction, J. Adv. Oxid. Technol., 1999, 4, 447–453.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Braun.

Additional information

This paper was published as part of the themed issue in honour of Nicholas Turro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahorodna, M., Oliveros, E., Wörner, M. et al. Dissolution and mineralization of ion exchange resins: differentiation between heterogeneous and homogeneous (photo-)Fenton processes. Photochem Photobiol Sci 7, 1480–1492 (2008). https://doi.org/10.1039/b813866b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b813866b

Navigation