Skip to main content
Log in

Characterization of new fluorescent labels for ultra-high resolution microscopy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photo-induced switching of dyes into dark, long-lived states, such as a triplet state, has recently gained increasing interest, as a means to achieve ultra-high optical resolution. Additionally, these long lived states are often highly environment-sensitive and their photodynamics can thus offer additional independent fluorescence-based information. However, although providing a useful mechanism for photo-induced switching, the triplet state often appears as a precursor state for photobleaching, which potentially can limit its usefulness. In this work, a set of rhodamine and pyronindyes, modified by substitution of heavy atoms and nitrogen within or close to the central xanthene unit of the dyes, were investigated with respect to their triplet state dynamics and photostabilities, under conditions relevant for ultra-high resolution microscopy. Out of the dyes investigated, in particular the rhodamine and pyronindyes with a sulfur atom replacing the central oxygen atom in the xanthene unit were found to meet the requirements for ultra-high resolution microscopy, combining a prominent triplet state yield with reasonable photostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Widengren and R. Rigler, Bioimaging, 1996, 4, 149–157.

    Article  CAS  Google Scholar 

  2. C. Eggeling, J. Widengren, R. Rigler and C. A. M. Seidel, Anal. Chem., 1998, 70, 2651–2659.

    Article  CAS  Google Scholar 

  3. T. Sanden, G. Persson, P. Thyberg, H. Blom and J. Widengren, Anal. Chem., 2007, 79, 3330–3341.

    Article  CAS  Google Scholar 

  4. S. W. Hell and M. Kroug, Appl. Phys. B: Lasers Opt., 1995, 60, 495–497.

    Article  Google Scholar 

  5. S. W. Hell, Nat. Biotechnol., 2003, 21, 1347–1355.

    Article  CAS  Google Scholar 

  6. S. W. Hell, Science, 2007, 316, 1153–1158.

    Article  CAS  Google Scholar 

  7. S. W. Hell and J. Wichmann, Opt. Lett., 1994, 19, 780–782.

    Article  CAS  Google Scholar 

  8. S. Bretschneider, C. Eggeling and S. W. Hell, Phys. Rev. Lett., 2007, 98, 218103.

    Article  Google Scholar 

  9. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz and H. F. Hess, Science, 2006, 313, 1642–1645.

    Article  CAS  Google Scholar 

  10. M. J. Rust, M. Bates and X. W. Zhuang, Nat. Methods, 2006, 3, 793–795.

    Article  CAS  Google Scholar 

  11. K. A. Lukyanov, A. F. Fradkov, N. G. Gurskaya, M. V. Matz, Y. A. Labas, A. P. Savitsky, M. L. Markelov, A. G. Zaraisky, X. N. Zhao, Y. Fang, W. Y. Tan and S. A. Lukyanov, J. Biol. Chem., 2000, 275, 25879–25882.

    Article  CAS  Google Scholar 

  12. R. Ando, H. Mizuno and A. Miyawaki, Science, 2004, 306, 1370–1373.

    Article  CAS  Google Scholar 

  13. C. Flors, J. Hotta, H. Uji-I, P. Dedecker, R. Ando, H. Mizuno, A. Miyawaki and J. Hofkens, J. Am. Chem. Soc., 2007, 129, 13970–13977.

    Article  CAS  Google Scholar 

  14. D. Magde, E. Elson and W. W. Webb, Phys. Rev. Lett., 1972, 29, 705–708.

    Article  CAS  Google Scholar 

  15. E. L. Elson and D. Magde, Biopolymers, 1974, 13, 1–27.

    Article  CAS  Google Scholar 

  16. D. Magde, E. L. Elson and W. W. Webb, Biopolymers, 1974, 13, 29–61.

    Article  CAS  Google Scholar 

  17. R. Rigler, U. Mets, J. Widengren and P. Kask, Eur. Biophys. J. Biophy. Lett., 1993, 22, 169–175.

    CAS  Google Scholar 

  18. D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting, Academic Press, London, 1984.

    Google Scholar 

  19. W. Becker, Advanced Time-Correlated Single Photon Counting TechniquesSpringer, New York, 2005.

    Book  Google Scholar 

  20. J. Widengren, R. Rigler and U. Mets, J. Fluoresc., 1994, 4, 255–258.

    Article  CAS  Google Scholar 

  21. D. W. Marquardt, J. Soc. Ind. Appl. Math., 1963, 11, 431–441.

    Article  Google Scholar 

  22. R. H. Nealey and J. S. Driscoll, J. Heterocycl. Chem., 1966, 3, 228–229.

    Article  CAS  Google Scholar 

  23. J. Arden-Jacob, Neue langwellige Xanthen-Farbstoffe für Fluoreszenzsonden und Farbstofflaser, Shaker Verlag, Aachen, 1993.

    Google Scholar 

  24. J. Widengren, U. Mets and R. Rigler, J. Phys. Chem., 1995, 99, 13368–13379.

    Article  CAS  Google Scholar 

  25. K. Hassler, T. Anhut, R. Rigler, M. Gosch and T. Lasser, Biophys. J., 2005, 88, L1–L3.

    Article  CAS  Google Scholar 

  26. J. Widengren, A. Chmyrov, C. Eggeling, P. A. Lofdahl and C. A. M. Seidel, J. Phys. Chem. A, 2007, 111, 429–440.

    Article  CAS  Google Scholar 

  27. J. B. Birks, Photophysics of aromatic molecules, Wiley, London, 1970.

    Google Scholar 

  28. F. Kohn, J. Hofkens, R. Gronheid, M. Van Der Auweraer and F. C. D. Schryver, J. Phys. Chem. A, 2002, 106, 4808–4814.

    Article  Google Scholar 

  29. K.-H. Drexhage, in Dye Lasers, ed. F. P. Schäfer, Springer-Verlag, Berlin, 3 edn, 1990, vol. 1, pp. 155–200.

    Article  Google Scholar 

  30. C. Eggeling, J. Widengren, R. Rigler and C. A. Seidel, in Applied Fluorescence in Chemistry, Biology and Medicine, ed. W. Rettig, B. Strehmel, S. Schrader and H. Seifert, Springer-Verlag, Berlin, Heidelberg, 1999, pp. 193–240.

  31. C. Eggeling, A. Volkmer and C. A. Seidel, ChemPhysChem, 2005, 6, 791–804.

    Article  CAS  Google Scholar 

  32. C. Eggeling, J. Widengren, L. Brand, J. Schaffer, S. Felekyan and C. A. Seidel, J. Phys. Chem. A Mol. Spectrosc. Kinet. Environ. Gen. Theory, 2006, 110, 2979–2995.

    CAS  PubMed  Google Scholar 

  33. J. Enderlein, I. Gregor, D. Patra and J. Fitter, Curr. Pharm. Biotechnol., 2004, 5, 155–161.

    Article  CAS  Google Scholar 

  34. J. R. Lakowicz, in Principles of fluorescence spectroscopy, Springer, New York, 3rd edn, 2006, p. 59.

    Book  Google Scholar 

  35. S. A. Soper, H. L. Nutter, R. A. Keller, L. M. Davis and E. B. Shera, Photochem. Photobiol., 1993, 57, 972–977.

    Article  CAS  Google Scholar 

  36. I. Rosenthal, Opt. Commun., 1978, 24, 164–166.

    Article  CAS  Google Scholar 

  37. H. Kambara, K. Nagai and K. Kawamoto, Electrophoresis, 1992, 13, 542–546.

    Article  CAS  Google Scholar 

  38. T. Hirschfeld, Appl. Opt., 1976, 15, 3135–3139.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chmyrov, A., Arden-Jacob, J., Zilles, A. et al. Characterization of new fluorescent labels for ultra-high resolution microscopy. Photochem Photobiol Sci 7, 1378–1385 (2008). https://doi.org/10.1039/b810991p

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b810991p

Navigation