Skip to main content
Log in

Inorganic photochemical protein scissors: photocleavage of lysozyme by Co(III) complexes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photocleavage of chicken hen egglysozyme by three Co(III)ammine complexes, hexamminecobalt(III) chloride ([Co(NH3)6]+3), pentamminechloro cobalt(III)chloride ([Co(NH3)5Cl]+2), and tetramminecarbonato cobalt(III) nitrate ([Co(NH3)4CO3]+), is reported here. Photocleavage resulted in two fragments of molecular masses of ~10.5 kDa and ~3.5 kDa which add-up to that of the parent molar mass. Detailed studies on the influence of irradiation time, excitation wavelength, the type of ligand coordinated to Co(III), concentration of the metal complex, the addition of competing metal ions, and quenchers on the protein photocleavage are reported. The Co(III) complexes also photocleaved apotransferrin, bovine serum albumin, and yeast enolase. Near-equimolar concentrations of Ni(II), Co(II) or Gd(III) inhibited the photocleavage, and therefore, binding of Co(III) metal complexes to Ni(II)/Co(II)/Gd(III)binding sites on lysozyme is necessary for the observed photocleavage. Since these ions are known to bind to Asp52 on lysozyme, we suspect that the above Co(III) complexes bind at this site, and initiate the protein cleavage. The Co(III) complexes have appropriate photochemical reactivities to cleave the peptide backbone, and they may be useful in the design of novel photochemical approaches to cleave the protein backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Ochiai, in Bioinorganic Chemistry. An Introduction, Allyn and Bacon Inc., Boston, 1977.

    Google Scholar 

  2. G. S. Jackson, I. Murray, L. L. P. Hosszu, N. Gibbs, J. P. Waltho, A. R. Clarke and J. Collinge, Location and properties of metal-binding sites on the human prion protein, Proc. Natl. Acad. Sci. USA, 2001, 98, 8531–8535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. M. Lambert and M. L. Gross, Location of alkali metal binding sites in endothelin A selective receptor antagonists, cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) and cyclo(D-Trp-D-Asp-Pro-D-Ile-Leu), from multistep collisionally activated decompositions, J. Mass. Spec., 2000, 35, 265–276.

    Article  Google Scholar 

  4. C. V. Kumar and A. Buranaprapuk, Site-specific photocleavage of proteins, Angew. Chem., 1997, 36, 2085.

    Article  CAS  Google Scholar 

  5. C. V. Kumar, A. Buranaprapuk, G. Opiteck, M. B. Moyer, S. Jockusch and N. J. Turro, Photochemical protease: site-specific photocleavage of hen egg lysozyme and bovine serum albumin, Proc. Natl. Acad. Sci. USA, 1998, 95, 10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. C. V. Kumar, A. Buranaprapuk and J. Thota, Protein scissors: Photocleavage of proteins at specific locations, J. Proc. Indian. Acad. Sci.-Chem Sci., 2002, 114, 579.

    Article  CAS  Google Scholar 

  7. M. R. Duff and C. V. Kumar, Site-selective photocleavage of proteins by uranyl ions, Angew. Chem. Int. Ed., 2005, 44, 1.

    Article  Google Scholar 

  8. I. R. Gibbons, Mocz, Gabor, Photocatalytic cleavage of proteins with vanadate and other transition metal complexes, Methods in Enzymology, 1991, 196, 428.

    Article  CAS  PubMed  Google Scholar 

  9. C. V. Kumar and J. Thota, Photocleavage of lysozyme by cobalt(III) complexes, Inorg. Chem, 2005, 44, 825.

    Article  CAS  PubMed  Google Scholar 

  10. M. Gabor and I. R. Gibbons, Iron(III)-mediated photolysis of outer arm dynein ATPase from sea urchin sperm flagella, J. Biol. Chem., 1990, 265, 2917.

    Article  Google Scholar 

  11. L. Kucharski, Lubbe, W. J. Maguire and M. E. Cation, hexaammines are selective and potent inhibitors of the CorA magnesium transport system, J. Biol. Chem., 2000, 275, 16767.

    Article  CAS  PubMed  Google Scholar 

  12. V. Balzani, and V. Carassiti, Photochemistry of Coordination Compounds, Academic Press, New York, 1970, pp. 193–244.

    Google Scholar 

  13. M. Z. Hoffman and K. R. Olson, The NH3+ radical in aqueous solution, J. Phys. Chem., 1978, 82, 2631.

    Article  CAS  Google Scholar 

  14. S. A. Penkett and A. W. Adamson, J. Am. Chem. Soc., 1965, 87, 2514.

    Article  CAS  Google Scholar 

  15. L. I. Grossweiner and M. S. Matheson, The kinetics of the dihalide ions from the flash photolysis of aqueous alkali halide solutions, J. Phys. Chem., 1957, 61, 1089.

    Article  CAS  Google Scholar 

  16. S. Chen, V. W. Cope and M. Z. Hoffman, Behavior of carbon trioxide (-) radicals generated in the flash photolysis of carbonatoamine complexes of cobalt(III) in aqueous solution, J. Phys. Chem., 1973, 77, 1111.

    Article  CAS  Google Scholar 

  17. E. R. Stadtman and R. L. Levine, Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 2003, 25, 207–218.

    Article  CAS  PubMed  Google Scholar 

  18. V. Balzani, L. Moggii, F. Scandola and V. Carassiti, Photochemistry of cobalt(III) complexes, Inorganica Chimica Acta Reviews, 1967, 1, 7.

    Article  CAS  Google Scholar 

  19. M. S. Weiss, G. J. Palm and R. Hilgenfeld, Crystallization, structure solution and refinement of hen egg-white lysozyme at pH 8.0 in the presence of MPD, Acta Crystallogr. Sect. D., 2000, 56, 952.

    Article  CAS  Google Scholar 

  20. T. Kortvelyesi, M. Silberstein, S. Dennis and S. Vajda, Improved mapping of protein binding sites, J. Computer-Aided Mol. Design, 2003, 17, 173–186.

    Article  CAS  Google Scholar 

  21. R. S. Norton and A. Allerhand, Participation of tryptophan 62 in the self-association of hen egg white lysozyme. Application of natural abundance carbon-13 nuclear magnetic resonance spectroscopy, J. Biol. Chem., 1977, 252, 1795.

    Article  CAS  PubMed  Google Scholar 

  22. V. I. Teichberg, N. Sharon, J. Moult, A. Smilansky and A. Yonath, Binding of divalent copper ions to aspartic acid residue 52 in hen egg-white lysozyme, J. Mol. Biol., 1974, 87, 357.

    Article  CAS  PubMed  Google Scholar 

  23. K. Ikeda and K. A. Hamaguchi, Interactions of manganese(2+), cobalt(2+), and nickel(2+) ions with hen egg-white lysozyme and with its N-acetylchitooligosaccharide complexes, J. Biol. Chem., 1973, 73, 307.

    CAS  Google Scholar 

  24. J. J. Pesek and J. F. Schneider, The detection of mercury, lead, and methylmercury binding sites on lysozyme by carbon-13 NMR chemical shifts of the carboxylate groups, J. Inorg. Biochem., 1988, 32, 233.

    Article  CAS  PubMed  Google Scholar 

  25. R. Olmo, P. Huerta, D. Blanco and J. M. Teijon, Viscometric, densimetric, and spectrophotometric study of lysozyme-zinc(II) and lysozyme-mercury(II) interactions, J. Inorg. Biochem., 1992, 47, 89.

    Article  CAS  Google Scholar 

  26. K. Kurach, L. Sieker and H. Jensen, Metal ion binding in triclinic lysozyme, J. Biol. Chem., 1975, 250, 19, 7663.

    Article  Google Scholar 

  27. G. G. Schlessinger, Inorganic Syntheses IX, McGraw-Hill, New York, 1967.

    Google Scholar 

  28. D. G. Hill and A. F. Rosenberg, Infrared absorption spectra of complex cobalt salts, J Chem. Phys., 1954, 22, 148.

    Article  CAS  Google Scholar 

  29. G. F. Svatos, D. M. Sweeny, S. Mizushima, C. Curran and J. V. Quagliano, Infrared absorption spectra of inorganic coordination complexes. XII. The, characteristic NH3 deformation vibrations of solid inorganic complexes, J. Am. Chem. Soc., 1957, 79, 3313.

    Article  CAS  Google Scholar 

  30. M. Kobayashi and J. Fujita, Infrared absorption spectra of hexammine metal complexes, J. Chem. Phys., 1955, 23, 1354.

    Article  CAS  Google Scholar 

  31. M. F. Manfrin, G. I. Varani, L. Moggi and V. Balzani, Photochemistry of the hexamminecobalt(III) and tris(ethylene-diamine)cobalt(III) ions, Mol. Photochem. 1969, 1, 387.

    CAS  Google Scholar 

  32. L. Moggi, N. Sabbatini and V. Balzani, Photochemistry of coordination compounds. XVII. Oxidation-reduction, and simultaneous aquation of Co(III) complexes by charge transfer excitation bands, Gazz. Chim. Ital., 1967, 97, 980.

    CAS  Google Scholar 

  33. F. Bassolo, R. G. Pearson, Mechanisms of Inorganic Reactions. A study of Metal Complexes in Solution, John Wiley, New York, 1958.

    Google Scholar 

  34. F. J. Garrick, Kinetics of coordination reactions in the cobaltammine series. II. The, effects of nitrate and sulfate ions on the rate of aquotization of the chloropentammine ion, Trans. Faraday Soc., 1938, 34, 1088–1093.

    Article  CAS  Google Scholar 

  35. T. P. Dasgupta and G. M. Harris, Kinetics and mechanism of aquation of carbonato complexes of cobalt(III). II. The, acid-catalyzed aquation of carbonatotetraaminecobalt(III) ion, J. Am. Chem. Soc., 1969, 91, 3207–3211.

    Article  CAS  Google Scholar 

  36. C. V. Kumar and A. Buranaprapuk, Tuning the Selectivity of Protein Photocleavage: Spectroscopic and Photochemical Studies, J. Am. Chem. Soc., 1999, 121, 4262.

    Article  CAS  Google Scholar 

  37. H. Schagger, G. Von Jagow, G. Tricine-sodium, dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 1987, 166, 368.

    Article  CAS  PubMed  Google Scholar 

  38. R. A. Pribush, C. K. Poon, C. M. Bruce and A. W. Adamson, Photochemistry of complex ions. XII. Photochemistry, of cobalt(III) acidoammines, J. Am. Chem. Soc., 1974, 96, 3027.

    Article  CAS  Google Scholar 

  39. R. Aasa, B. G. Malmstrom, P. Saltman and T. Vanngard, The specific binding of iron(III) and copper(II) to transferrin and conalbumin, Biochim. Biophys. Acta, 1963, 75, 203–222.

    Article  CAS  PubMed  Google Scholar 

  40. L. Moggi, N. Sabbatini and O. Traverso, Direct and sensitized photooxidation reduction of the tris(o-phenanthroline)cobalt(III) ion, Molec. Photochem., 1973, 5, 11–20.

    CAS  Google Scholar 

  41. A. F. Vaudo, E. R. Kantrowitz, M. Z. Hoffman, E. Papconstantinou and J. F. Endicott, Intermediates in the photochemistry of amine-oxalate complexes of cobalt(III) in aqueous solution, J. Am. Chem. Soc., 1972, 94, 6655.

    Article  CAS  Google Scholar 

  42. S. J. Li, Structural details at active site of hen egg white lysozyme with di- and trivalent metal ions, Biopolymers, 2006, 81, 74–80.

    Article  CAS  PubMed  Google Scholar 

  43. G. Sergeeva, A. Chibisov, L. Levshin and A. Karyakin, Quenching of excited uranyl ions by aliphatic alcohols in aqueous solutions, Chem. Commun., 1974, 159–160.

    Google Scholar 

  44. R. C. Brasted and C. Hirayama, An examination of the absorption spectra of some cobalt-(III) amine complexes. Effect of ligand and solvents in absorption, J. Phys. Chem., 1959, 63, 780.

    Article  CAS  Google Scholar 

  45. V. S. Sastri, Disposition of carbonato group in cobalt(III) complexes, Inorg. Chim. Acta, 1972, 6, 264.

    Article  CAS  Google Scholar 

  46. J. F. Endicott, G. J. Ferraudi and J. R. Barber, Charge transfer spectroscopy, redox energetics, and photoredox behavior of transition metal ammine complexes. Critical comparison of observations with mechanisms and models, J. Phys. Chem., 1975, 79, 630–643.

    Article  CAS  Google Scholar 

  47. J. F. Endicott and M. Z. Hoffman, Photoreduction of cobalt(III) complexes at 2537 A, J. Am. Chem. Soc., 1965, 87, 3348–3356.

    Article  CAS  Google Scholar 

  48. V. S. Sastri and C. H. Langford, Can. J. Chem., 1969, 47, 4237.

    Article  CAS  Google Scholar 

  49. A. W. Adamson, Photochemical oxidation-reduction reactions of some transition metal complexes, Discuss. Faraday Soc., 1960, 29, 163–168.

    Article  Google Scholar 

  50. S. Hashimoto, H. Seki, T. Masuda and M. Kondo, Dimer formation in radiation-irradiated aqueous solution of lysozyme studied by light-scattering-intensity measurement, Int. J. Radiat. Biol., 1981, 40, 31–45.

    Article  CAS  Google Scholar 

  51. S. Hashimoto, A. Kira, M. Imamura and T. Masuda, Lysozyme dimer formation on lysozyme oxidation with Br2 radical as studied by fluorescence evolution, Int. J. Radiat. Biol., 1982, 41, 303–314.

    CAS  Google Scholar 

  52. G. E. Adams, J. E. Aldrich, R. H. Bisby, R. B. Cundall, J. L. Redpath and R. L. Willson, Selective free radical reactions with proteins and enzymes. Reactions of inorganic radical anions with amino acids, Radiat. Res., 1972, 49, 278–289.

    Article  CAS  PubMed  Google Scholar 

  53. S. -N. Chen and M. Z. Hoffman, Radiat. Res., 1973, 56, 40–47.

    Article  CAS  PubMed  Google Scholar 

  54. H. L. Atkins, W. Bennett-Corniea and W. M. Garrison, Radiation-induced oxidation of peptides in aqueous solutions, J. Phys. Chem, 1967, 71, 772–774.

    Article  CAS  Google Scholar 

  55. M. J. Davies, Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage, Arch. Biochem. Biophys., 1996, 336, 163–172.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Challa V. Kumar.

Additional information

This paper was published as part of the themed issue in honour of Nicholas Turro.

Electronic supplementary information (ESI) available: The photocleavage yields of other proteins by Co(III) complexes are presented. See DOI:10.1039/b810422k

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jyotsna, T., Bandara, K. & Kumar, C.V. Inorganic photochemical protein scissors: photocleavage of lysozyme by Co(III) complexes. Photochem Photobiol Sci 7, 1531–1539 (2008). https://doi.org/10.1039/b810422k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b810422k

Navigation