Skip to main content
Log in

Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Solar radiation sustains and affects all life forms on Earth. In recent years, the increase in environmental levels of solar-UV radiation due to depletion of the stratospheric ozone layer, as a result of anthropogenic emission of destructive chemicals, has highlighted serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions, where the intensity of solar radiation is higher. To better understand the impact of the harmful effects of solar-UV radiation on the DNA molecule, we developed a reliable biological monitoring system based on the exposure of plasmidDNA to artificial UV lamps and sunlight. The determination and quantification of different types of UV photoproducts were performed through the use of specific DNA repair enzymes and antibodies. As expected, a significant number of CPDs and 6-4PPs was observed when the DNA-dosimeter system was exposed to increasing doses of UVB radiation. Moreover, CPDs could also be clearly detected in plasmidDNA when this system was exposed to either UVA or directly to sunlight. Interestingly, although less abundant, 6-4PPs and oxidative DNA damage were also generated after exposure to both UVA and sunlight. These results confirm the genotoxic potential of sunlight, reveal that UVA may also produce CPDs and 6-4PPs directly in naked DNA and demonstrate the applicability of a DNA-dosimeter system for monitoring the biological effects of solar-UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Caldwell, J. F. Bornman, C. L. Ballare, S. D. Flint and G. Kulandaivelu, Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors Photochem. Photobiol. Sci. 2007 6 252–266.

    Article  CAS  PubMed  Google Scholar 

  2. M. Norval, A. P. Cullen, F. R. de Gruijl, J. Longstreth, Y. Takizawa, R. M. Lucas, F. P. Noonan, J. C. van der Leun, The effects on human health from stratospheric ozone depletion and its interactions with climate change Photochem. Photobiol. Sci. 2007 6 232–251.

    Article  CAS  PubMed  Google Scholar 

  3. A. Takahashi and T. Ohnishi, The significance of the study about the biological effects of solar ultraviolet radiation using the Exposed Facility on the International Space Station Biol. Sci. Space 2004 18 255–260.

    Article  PubMed  Google Scholar 

  4. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel and E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts J. Photochem. Photobiol., B 1999 49 71–80.

    Article  CAS  Google Scholar 

  5. J. E. Frederick and D. Lubin, Solar ultraviolet irradiance at Palmer Station, Antarctica. Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, 1994.

    Google Scholar 

  6. N. Munakata, S. Cornain, M. Kanoko, K. Mulyadi, S. Lestari, W. Wirohadidjojo, D. Bolsee, S. Kazadzis, V. Meyer-Rochow, N. Schuch, C. Casiccia, M. Kaneko, C. M. Liu, K. Jimbow, T. Saida, C. Nishigori, K. Ogata, K. Inafuku, K. Hieda and M. Ichihashi, Biological monitoring of solar UV radiation at 17 sites in Asia, Europe and South America from 1999 to 2004 Photochem. Photobiol. 2006 82 689–694.

    Article  CAS  PubMed  Google Scholar 

  7. J. Rozema, P. Boelen and P. Blokker, Depletion of stratospheric ozone over the Antartic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview Environ. Poll. 2005 137 428–442.

    Article  CAS  Google Scholar 

  8. T. M. Rünger, How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: The role of cellular damage responses Journal of Investigative Dermatology 2007 127 2103–2105.

    Article  CAS  PubMed  Google Scholar 

  9. L. Daya-Grosjean and A. Sarasin, The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors Mutat. Res. 2005 571 43–56.

    Article  CAS  PubMed  Google Scholar 

  10. S. Courdavault, C. Baudouin, M. Charveron, B. Canguilhem, A. Favier, J. Cadet and T. Douki, Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations DNA Repair (Amst) 2005 4 836–844.

    Article  CAS  Google Scholar 

  11. S. E. Freeman, H. Hacham, R. W. Gange, D. J. Maytum, J. C. Sutherland and B. M. Sutherland, Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light Proc. Natl. Acad. Sci. USA 1989 86 5605–5609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. I. Tsilimigaki, N. Messini-Nikolaki, M. Kanariou and S. M. Piperakis, A study on the effects of seasonal solar radiation on exposed populations Mutagenesis 2003 18 139–143.

    Article  CAS  PubMed  Google Scholar 

  13. G. P. Pfeifer, Y. H. You and A. Besaratinia, Mutations induced by ultraviolet light Mutat. Res. 2005 571 19–31.

    Article  CAS  PubMed  Google Scholar 

  14. J. M. Song, J. R. Milligan and B. M. Sutherland, Bistranded oxidized purine damage clusters: induced in DNA by long-wavelength ultraviolet (290-400 nm) radiation Biochemistry 2002 41 8683–8688.

    Article  CAS  PubMed  Google Scholar 

  15. T. Douki, A. Reynaud-Angelin, J. Cadet and E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation Biochemistry 2003 42 9221–9226.

    Article  CAS  PubMed  Google Scholar 

  16. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation Proc. Natl. Acad. Sci. USA 2006 103 13765–13770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. R. M. Tyrrell, Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation Photochem. Photobiol. 1973 17 69–73.

    Article  CAS  PubMed  Google Scholar 

  18. J. H. Yoon, C. S. Lee, T. R. O’Connor, A. Yasui and G. P. Pfeifer, The DNA damage spectrum produced by simulated sunlight J. Mol. Biol. 2000 299 681–693.

    Article  CAS  PubMed  Google Scholar 

  19. D. Perdiz, P. Grof, M. Mezzina, O. Nikaido, E. Moustacchi and E. Sage, Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis J. Biol. Chem. 2000 275 26732–26742.

    Article  CAS  PubMed  Google Scholar 

  20. P. Rettberg and C. S. Cockell, Biological UV dosimetry using the DLR-biofilm Photochem. Photobiol. Sci. 2004 3 781–787.

    Article  CAS  PubMed  Google Scholar 

  21. A. George, H. Peat and A. Buma, Evaluation of DNA dosimetry to asses ozone-mediated variability of biologically harmful radiation in Antartica. Photochem. Photobiol. 2002 76 274–280.

    Article  CAS  PubMed  Google Scholar 

  22. H. Yoshida and J. D. Regan, Solar UVB dosimetry by amplification of short and long segments in phage lambda DNA Photochem. Photobiol. 1997 66 672–675.

    Article  CAS  PubMed  Google Scholar 

  23. R. M. Tyrrell, Solar dosimetry with repair deficient bacterial spores: action spectra, photoproduct measurements and a comparison with other biological systems Photochem. Photobiol. 1978 27 571–579.

    Article  CAS  PubMed  Google Scholar 

  24. N. Munakata and C. S. Rupert, Genetically controlled removal of “spore photoproduct” from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores J. Bacteriol. 1972 111 192–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Puskeppeleit, L. E. Quintern, S. El Naggar, J. U. Schott, U. Eschweiler, G. Horneck and H. Bucker, Long-Term Dosimetry of Solar UV Radiation in Antarctica with Spores of Bacillus subtilis Appl. Environ. Microbiol. 1992 58 2355–2359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. Ronto, S. Gaspar and A. Berces, Phage T7 in biological UV dose measurement J. Photochem. Photobiol., B 1992 12 285–294.

    Article  CAS  Google Scholar 

  27. P. Grof, S. Gaspar and G. Ronto, Use of uracil thin layer for measuring biologically effective UV dose Photochem. Photobiol. 1996 64 800–806.

    Article  CAS  PubMed  Google Scholar 

  28. A. Berces, A. Fekete, S. Gaspar, P. Grof, P. Rettberg, G. Horneck and G. Ronto, Biological UV dosimeters in the assessment of the biological hazard from environmental radiation J. Photochem. Photobiol., B 1999 53 36–43.

    Article  CAS  Google Scholar 

  29. G. Horneck, P. Rettberg, E. Rabbow, W. Strauch, G. Seckmeyer, R. Facius, G. Reitz, K. Strauch and J. U. Schott, Biological dosimetry of solar radiation for different simulated ozone column thicknesses J. Photochem. Photobiol., B 1996 32 189–196.

    Article  CAS  Google Scholar 

  30. K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products Proc. Natl. Acad. Sci. USA 2000 97 6640–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. L. F. Agnez-Lima, P. Di Mascio, R. L. Napolitano, R. P. Fuchs and C. F. Menck, Mutation spectrum induced by singlet oxygen in Escherichia coli deficient in exonuclease III Photochem. Photobiol. 1999 70 505–511.

    Article  CAS  PubMed  Google Scholar 

  32. P. Grof, G. Ronto and E. Sage, A computational study of physical and biological characterization of common UV sources and filters, and their relevance for substituting sunlight J. Photochem. Photobiol., B 2002 68 53–59.

    Article  CAS  Google Scholar 

  33. P. Di Mascio, H. Wefers, H. P. Do-Thi, M. V. Lafleur and H. Sies, Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single-strand breaks Biochim. Biophys. Acta 1989 1007 151–157.

    Article  PubMed  Google Scholar 

  34. M. Higurashi, T. Ohtsuki, A. Inase, R. Kusumoto, C. Masutani, F. Hanaoka and S. Iwai, Identification and characterization of an intermediate in the alkali degradation of (6-4) photoproduct-containing DNA J. Biol. Chem. 2003 278 51968–51973.

    Article  CAS  PubMed  Google Scholar 

  35. R. M. Tyrrell, R. D. Ley and R. B. Webb, Induction of single-strand breaks (alkali-labile bonds) in bacterial and phage DNA by near UV (365 nm) radiation Photochem. Photobiol. 1974 20 395–398.

    Article  CAS  PubMed  Google Scholar 

  36. J. Cadet, E. Sage and T. Douki, Ultraviolet radiation-mediated damage to cellular DNA Mutat. Res. 2005 571 3–17.

    Article  CAS  PubMed  Google Scholar 

  37. C. Kielbassa, L. Roza and B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light Carcinogenesis 1997 18 811–816.

    Article  CAS  PubMed  Google Scholar 

  38. J. Sambrook, E. F. Fritsch and T. Maniats, Cold Spring Harbor Laboratory Press, New York, 2nd edn., 1989, vol. 1, ch. 1, pp. 1.42–41.46.

  39. S. Kanno, S. Iwai, M. Takao and A. Yasui, Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage Nucleic Acids Res. 1999 27 3096–3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. L. S. Kan, L. Voituriez and J. Cadet, The Dewar valence isomer of the (6-4) photoadduct of thymidylyl-(3′-5′)-thymidine monophosphate: formation, alkaline lability and conformational properties J. Photochem. Photobiol., B 1992 12 339–357.

    Article  CAS  Google Scholar 

  41. C. A. Smith and J. S. Taylor, Preparation and characterization of a set of deoxyoligonucleotide 49-mers containing site-specific cis-syn, trans-syn-I, (6-4), and Dewar photoproducts of thymidylyl(3′->5′)-thymidine J. Biol. Chem. 1993 268 11143–11151.

    Article  CAS  PubMed  Google Scholar 

  42. R. R. Ariza, T. Roldan-Arjona, C. Hera and C. Pueyo, A method for selection of forward mutations in supF gene carried by shuttle-vector plasmids Carcinogenesis 1993 14 303–305.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Frederico Martins Menck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuch, A.P., da Silva Galhardo, R., de Lima-Bessa, K.M. et al. Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation. Photochem Photobiol Sci 8, 111–120 (2009). https://doi.org/10.1039/b810085c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b810085c

Navigation