Skip to main content
Log in

Synthesis and photo-conversion of androsta- and pregna-5,7-dienes to vitamin D3-like derivatives

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Calcitriol (3ß,5Z,7E)-9,10-secocholesta-5,7,10(19)-trien-1α,3ß,25-triol) is a powerful oncostatic form of vitamin D3 that is of limited clinical utility due to hypercalcemic (toxic) effects. Since the removal of the side chain reduces or eliminates the calcemic activity of vitamin D3, secosteroidal compounds lacking or with a shortened side chain are good candidates for anti-cancer drugs. In addition, 5,7-steroidal dienes without a side chain can be generated in vivo under pathological conditions. A series of androsta- and pregna-5,7-dienes was efficiently synthesized from their respective 3-acetylated 5-en precursors by bromination-dehydrobromination and deacetylation reactions. Ultraviolet B (UVB) irradiation was used to generate corresponding 9,10-secosteroids with vitamin D-like structures. Additional products with tachysterol-like (T-like) structures or 5,7-dienes with inverted configuration at C-9 and C-10 (lumisterol, L-like) were also detected. Different doses of UVB resulted in formation of various products. At low doses, previtamin D-, T- or L-like compounds were formed as the main products, while higher doses induced further isomerization, with formation of potentially oxidized derivatives. In summary, we describe dynamic UVB induced conversion of androsta- and pregna-5,7-dienes into vitamin D-like compounds and their rearranged analogues; additionally novel T-like and L-like structures were also produced and characterized. Further biological evaluation of newly synthesized compounds should help to select the best candidate(s) for potential treatment of hyperproliferative diseases including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Holick and M. B. Clark, The photobiogenesis and metabolism of vitamin D, Fed. Proc., 1978, 37, 2567–2574.

    CAS  PubMed  Google Scholar 

  2. M. F. Holick, Vitamin D: A millenium perspective, J. Cell. Biochem., 2003, 88, 296–307.

    Article  CAS  Google Scholar 

  3. M. F. Holick, X. Q. Tian, and M. Allen, Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals, Proc. Natl. Acad. Sci. USA, 1995, 92, 3124–3126.

    Article  CAS  Google Scholar 

  4. M. F. Holick, Calcium and vitamin D. Diagnostics, and therapeutics, Clin. Lab. Med., 2000, 20, 569–590.

    Article  CAS  Google Scholar 

  5. M. F. Holick, Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease, Am. J. Clin. Nutrition, 2004, 80, 1678S–1688S.

    Article  CAS  Google Scholar 

  6. K. Pfoertner, Photochemistry of the vitamin D series. II. Wavelength, dependence of photoisomerization of precalciferol, Helv. Chim. Acta, 1972, 55, 937–947.

    Article  CAS  Google Scholar 

  7. W. G. Dauben and R. B. Phillips, Wavelength-controlled production of previtamin D3, J. Am. Chem. Soc., 1982, 104, 355–356.

    Article  CAS  Google Scholar 

  8. J. A. MacLaughlin, R. R. Anderson and M. F. Holick, Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin, Science, 1982, 216, 1001–1003.

    Article  CAS  Google Scholar 

  9. A. R. Webb, B. R. DeCosta and M. F. Holick, Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation, J. Clin. Endocrinol. Met., 1989, 68, 882–887.

    Article  CAS  Google Scholar 

  10. X. Jin, X. Yang, L. Yang, Z.-L. Liu, and F. Zhang, Autoxidation of isotachysterol, Tetrahedron, 2004, 60, 2881–2888.

    Article  CAS  Google Scholar 

  11. X. Q. Tian and M. F. Holick, A liposomal model that mimics the cutaneous production of vitamin D3. Studies of the mechanism of the membrane-enhanced thermal isomerization of previtamin D3 to vitamin D3, J. Biol. Chem., 1999, 274, 4174–4179.

    Article  CAS  Google Scholar 

  12. J. K. Yamamoto and R. F. Borch, Photoconversion of 7-dehydrocholesterol to vitamin D3 in synthetic phospholipid bilayers, Biochemistry, 1985, 24, 3338–3344.

    Article  CAS  Google Scholar 

  13. M. J. Nowaczyk and J. S. Waye, The Smith-Lemli-Opitz syndrome: a novel metabolic way of understanding developmental biology, embryogenesis, and dysmorphology, Clin. Genetics, 2001, 59, 375–386.

    Article  CAS  Google Scholar 

  14. C. H. Shackleton, E. Roitman, and R. Kelley, Neonatal urinary steroids in Smith-Lemli-Opitz syndrome associated with 7-dehydrocholesterol reductase deficiency, Steroids, 1999, 64, 481–490.

    Article  CAS  Google Scholar 

  15. G. S. Tint, M. Irons, E. R. Elias, A. K. Batta, R. Frieden, T. S. Chen, and G. Salen, Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome, N. Engl. J. Med., 1994, 330, 107–113.

    Article  CAS  Google Scholar 

  16. A. D. Tait, L. C. Hodge and W. R. Allen, Biosynthesis of 3 beta-hydroxy-5,7-pregnadien-20-one by the horse fetal gonad, FEBS Lett., 1983, 153, 161–164.

    Article  CAS  Google Scholar 

  17. A. D. Tait, L. C. Hodge and W. R. Allen, The biosynthesis of 3 beta-hydroxy-5,7-androstadien-17-one by the horse fetal gonad, FEBS Lett., 1985, 182, 107–110.

    Article  CAS  Google Scholar 

  18. A. D. Tait, S. Santikarn and W. R. Allen, Identification of 3 beta-hydroxy-5,7-pregnadien-20-one and 3 beta-hydroxy-5,7-androstadien-17-one as endogenous steroids in the fetal horse gonad, J. Endocrinol., 1983, 99, 87–92.

    Article  CAS  Google Scholar 

  19. H. F. DeLuca, Overview of general physiologic features and functions of vitamin D, Am. J. Clin. Nutrition, 2004, 80, 1689S–1696S.

    Article  CAS  Google Scholar 

  20. D. D. Bikle, Y. Oda, and Z. Xie, Vitamin D and skin cancer: a problem in gene regulation, J. Steroid Biochem. Mol. Biol., 2005, 97, 83–91.

    Article  CAS  Google Scholar 

  21. L. A. Plum, J. M. Prahl, X. Ma, R. R. Sicinski, S. Gowlugari, M. Clagett-Dame and H. F. DeLuca, Biologically active noncalcemic analogs of 1alpha,25-dihydroxyvitamin D with an abbreviated side chain containing no hydroxyl, Proc. Natl. Acad. Sci. USA, 2004, 101, 6900–6904.

    Article  CAS  Google Scholar 

  22. M. P. Murari, J. M. Londowski, S. Bollman, and R. Kumar, Synthesis and biological activity of 3 beta-hydroxy-9,10-secopregna-5,7,10[19]-triene-20-one: a side chain analogue of vitamin D3, J. Steroid Biochem., 1982, 17, 615–619.

    Article  CAS  Google Scholar 

  23. P. Marwah, A. Marwah and H. A. Lardy, Microwave induced selective enolization of steroidal ketones efficient acetylation of sterols in semisolid state, Tetrahedron, 2003, 59, 2273–2287.

    Article  CAS  Google Scholar 

  24. L. W. Guo, W. K. Wilson, J. Pang and C. H. Shackleton, Chemical synthesis of 7- and 8-dehydro derivatives of pregnane-3,17alpha,20-triols, potential steroid metabolites in Smith-Lemli-Opitz syndrome, Steroids, 2003, 68, 31–42.

    Article  CAS  Google Scholar 

  25. T. W. Fischer, T. W. Sweatman, I. Semak, R. M. Sayre, J. Wortsman, and A. Slominski, Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems, FASEB J., 2006, 20, 1564–1566.

    Article  CAS  Google Scholar 

  26. EU Pat., 184112, 1986.

  27. A. U. Siddiqui, W. K. Wilson, S. Swaminathan, G. J. Schroepfer, Jr., Efficient preparation of steroidal 5,7-dienes of high purity, Chem. Phys. Lipids, 1992, 63, 115–129.

    Article  CAS  Google Scholar 

  28. T. Kobayashi, S. Yoshimoto, and M. Yasumura, An improved procedure for the isolation of suprasterol2 I and II from a photochemical reaction mixture of ergocalciferol (vitamin D2), J. Nutr. Sci. Vitaminol., 1977, 23, 291–298.

    Article  CAS  Google Scholar 

  29. V. K. Agarwal, A new procedure for the isomerization of vitamin D and its metabolites, J. Steroid Biochem., 1990, 35, 149–150.

    Article  CAS  Google Scholar 

  30. C. Djerassi, J. Romo, and G. Rosenkranz, Steroidal sapogenins. VIII. Steroids. 18. Synthesis of D7,9(11)-allopregnadien-3b-ol-20-one from diosgenin and from D5-pregnen-3b-ol-20-one, J. Org. Chem., 1951, 16, 754–760.

    Article  CAS  Google Scholar 

  31. R. Antonucci, S. Bernstein, D. Giancola and K. J. Sax, Delta 5,7-Steroids. VI. The, preparation of Delta 5,7-steroidal hormones, J. Org. Chem., 1951, 16, 1126–1133.

    Article  CAS  Google Scholar 

  32. US Pat., 7253293, 2005.

  33. US Pat., 6372926, 1997.

  34. L. Velluz, G. Amiard, and B. Goffinet, Etio analogs of precalciferol, Bull. Soc. Chim. France, 1957, 882–886.

    Google Scholar 

  35. US Pat., 4891364, 1990.

  36. Br. Pat., 989881, 1965.

  37. A. Slominski, J. Zjawiony, J. Wortsman, I. Semak, J. Stewart, A. Pisarchik, T. Sweatman, J. Marcos, C. C. Dunbar, and R. Tuckey, A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin, Eur. J. Biochemistry/FEBS, 2004, 271, 4178–4188.

    Article  CAS  Google Scholar 

  38. M. F. Holick, M. Garabedian, H. K. Schnoes and H. F. DeLuca, Relationship of 25-hydroxyvitamin D3 side chain structure to biological activity, J. Biol. Chem., 1975, 250, 226–230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was published as part of the themed issue in honour of Nicholas Turro.

Electronic supplementary information (ESI) available: HPLC chromatogram, UV spectra and additional experimental data for irradiation products of androsta- and pregna-5,7-dienes. NMR spectra for 5a, 5aD, 5aL and 5aT and Table of shifts for androsta- and pregna-5,7-dienes. See DOI: 10.1039/b809005j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zmijewski, M.A., Li, W., Zjawiony, J.K. et al. Synthesis and photo-conversion of androsta- and pregna-5,7-dienes to vitamin D3-like derivatives. Photochem Photobiol Sci 7, 1570–1576 (2008). https://doi.org/10.1039/b809005j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b809005j

Navigation