Skip to main content
Log in

Bicarbonate-enhanced transformation of phenol upon irradiation of hematite, nitrate, and nitrite

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Bicarbonate enhances the transformation of phenol upon irradiation of hematite, and phenolnitration upon irradiation of both nitrate and nitrite. Hematite under irradiation is able to oxidise the carbonate ion to the CO3-• radical, which in turn oxidises phenol to the phenoxyl radical faster compared to the direct photo-oxidation of phenol by hematite. The formation of CO3-• from hematite and carbonate under irradiation is supported by the detection of3,3′-dityrosine from tyrosine, added as a probe for CO3-•. It is shown that Fe(III) might be an important photochemical source of CO3-• in Fe-rich waters, e.g. waters that contain more than 1 mg L-1Fe. The enhancement by bicarbonate of phenolnitration upon nitrate irradiation is probably accounted for by an increased photogeneration rate of nitrogen dioxide. The process could lead to enhanced phenol photonitration by nitrate in waters rich of inorganic carbon (>10 mM bicarbonate). Bicarbonate also increases the transformation and nitration rates of phenol upon nitrite photolysis. The effect is due to the combination of basification that enhances phenol nitrosation and nitration, and of peculiar bicarbonate chemistry. It is shown that bicarbonate-enhanced phenolnitration upon nitrite photolysis could be a significant photonitration pathway, leading to the generation of toxic nitrated compounds in natural waters in which the scavenging of hydroxyl radicals by nitrite is competitive with that of Dissolved Organic Matter (DOM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Edhlund, W. A. Arnold and K. McNeil, Aquatic photochemistry of nitrofuran antibiotics Environ. Sci. Technol. 2006 40 5422–5427.

    Article  CAS  PubMed  Google Scholar 

  2. K. Fenner, S. Canonica, B. I. Escher, L. Gasser, S. Spycher and H. C. Tülp, Developing methods to predict chemical fate and effect endpoints for use within REACH Chimia 2006 60 683–690.

    Article  CAS  Google Scholar 

  3. K. H. Hefner, J. M. Fisher and J. L. Ferry, A multifactor exploration of the photobleaching of Suwannee river dissolved organic matter across the freshwater-saltwater interface Environ. Sci. Technol. 2006 40 3717–3722.

    Article  CAS  PubMed  Google Scholar 

  4. A. V. Vahatalo and R. G. Zepp, Photochemical mineralization of dissolved organic nitrogen to ammonium in the Baltic Sea Environ. Sci. Technol. 2005 39 6985–6992.

    Article  PubMed  CAS  Google Scholar 

  5. J. Thomson, A. Parkinson and F. A. Roddick, Depolymerization of chromophoric natural organic matter Environ. Sci. Technol. 2004 38 3360–3369.

    Article  CAS  PubMed  Google Scholar 

  6. D. L. Giokas and A. G. Vlessidis, Application of a novel chemometric approach to the determination of aqueous photolysis rates of organic compounds in natural waters Talanta 2007 71 288–295.

    Article  CAS  PubMed  Google Scholar 

  7. M. W. Lam and S. A. Mabury, Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters Aquat. Sci. 2005 67 177–188.

    Article  CAS  Google Scholar 

  8. M. W. Lam, C. J. Young and S. A. Mabury, Aqueous photochemical reaction kinetics and transformations of fluoxetine Environ. Sci. Technol. 2005 39 513–522.

    Article  CAS  PubMed  Google Scholar 

  9. S. S. Walse, S. L. Morgan, L. Kong and J. L. Ferry, Role of dissolved organic matter, nitrate, and bicarbonate in the photolysis of aqueous fipronil Environ. Sci. Technol. 2004 38 3908–3915.

    Article  CAS  PubMed  Google Scholar 

  10. S. Canonica, Oxidation of aquatic organic contaminants induced by excited triplet states Chimia 2007 61 641–644.

    Article  CAS  Google Scholar 

  11. A. Ter Halle and C. Richard, Simulated solar light irradiation of mesotrione in natural waters Environ. Sci. Technol. 2006 40 3842–3847.

    Article  CAS  PubMed  Google Scholar 

  12. P. P. Vaughan and N. V. Blough, Photochemical formation of hydroxyl radical by constituents of natural waters Environ. Sci. Technol. 1998 32 2947–2953.

    Article  Google Scholar 

  13. D. Vione, G. Falletti, V. Maurino, C. Minero, E. Pelizzetti, M. Malandrino, R. Ajassa, R. I. Olariu and C. Arsene, Sources and sinks of hydroxyl radicals upon irradiation of natural water samples Environ. Sci. Technol. 2006 40 3775–3781.

    Article  CAS  PubMed  Google Scholar 

  14. J. Huang and S. A. Mabury, The role of carbonate radical in limiting the persistence of sulfur-containing compounds in sunlit natural waters Chemosphere 2000 41 1775–1782.

    Article  CAS  PubMed  Google Scholar 

  15. R. A. Larson and R. G. Zepp, Reactivity of the carbonate radical with aniline derivatives Environ. Toxicol. Chem. 1988 7 265–274.

    Article  CAS  Google Scholar 

  16. S. Chiron, C. Minero and D. Vione, Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters Environ. Sci. Technol. 2006 40 5977–5983.

    Article  CAS  PubMed  Google Scholar 

  17. C. Minero, S. Chiron, G. Falletti, V. Maurino, E. Pelizzetti, R. Ajassa, M. E. Carlotti and D. Vione, Photochemical processes involving nitrite in surface water samples Aquat. Sci. 2007 69 71–85.

    Article  CAS  Google Scholar 

  18. P. L. Brezonik and J. Fulkerson-Brekken, Nitrate-induced photolysis in natural waters: Controls on the concentrations of hydroxyl radicals photo-intermediates by natural scavenging agents Environ. Sci. Technol. 1998 32 3004–3010.

    Article  CAS  Google Scholar 

  19. S. Canonica, T. Kohn, M. Mac, F. J. Real, J. Wirz, U. Von Gunten, Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds Environ. Sci. Technol. 2005 39 9182–9188.

    Article  CAS  PubMed  Google Scholar 

  20. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (?OH/?O-) in aqueous solution J. Phys. Chem. Ref. Data 1988 17 513–886.

    Article  CAS  Google Scholar 

  21. P. Neta, R. E. Huie and A. B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution J. Phys. Chem. Ref. Data 1988 17 1027–1230.

    Article  CAS  Google Scholar 

  22. R. C. Bouillon and W. L. Miller, Photodegradation of dimethyl sulfide (DMS) in natural waters: Laboratory assessment of the nitrate-photolysis-induced DMS oxidation Environ. Sci. Technol. 2005 39 9471–9477.

    Article  CAS  PubMed  Google Scholar 

  23. D. Vione, V. Maurino, C. Minero, D. Borghesi, M. Lucchiari and E. Pelizzetti, New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide Environ. Sci. Technol. 2003 37 4635–4641.

    Article  CAS  PubMed  Google Scholar 

  24. P. Mazellier, G. Mailhot and M. Bolte, Photochemical behavior of the iron(III)/2,6-dimethylphenol system New J. Chem. 1997 21 389–397.

    CAS  Google Scholar 

  25. D. W. King, R. A. Aldrich and S. E. Charnecki, Photochemical redox cycling of iron in NaCl solutions Mar. Chem. 1993 44 105–120.

    Article  CAS  Google Scholar 

  26. P. M. Bohrer, B. Sulzberger, P. Reichard and S. M. Kraemer, Effect of siderophores on the light-induced dissolution of colloidal iron(III) (hydr)oxides Mar. Chem. 2005 93 179–193.

    Article  CAS  Google Scholar 

  27. J. K. Leland and A. J. Bard, Photochemistry of colloidal semiconducting iron oxide polymorphs J. Phys. Chem. 1987 91 5076–5083.

    Article  CAS  Google Scholar 

  28. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical actinometry Pure Appl. Chem. 2004 76 2105–2146.

    Article  CAS  Google Scholar 

  29. D. Vione, C. Minero, V. Maurino and E. Pelizzetti, Seasonal and water column trends of the relative role of nitrate and nitrite as ?OH sources in surface waters Ann. Chim. (Rome) 2007 97 699–711.

    Article  CAS  Google Scholar 

  30. M. N. Alvarez, G. Peluffo, P. Wardman and R. Radi, Reaction of the carbonate radical with spin-trap 5,5′-dimethyl-1-pyrrolidone-N-oxide in chemical and cellular systems: Pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies Free Radical Biol. Med. 2007 43 1523–1533.

    Article  CAS  Google Scholar 

  31. S. Markager and W. F. Vincent, Spectral light attenuation and the absorption of UV and blue light in natural waters Limnol. Oceanogr. 2000 45 642–650.

    Article  CAS  Google Scholar 

  32. A. E. Martell, R. M. Smith, R. J. Motekaitis, Critically selected stability constants of metal complexes database, version 4.0, released November 1997.

  33. B. C. Faust and M. R. Hoffmann, Photoinduced reactive dissolution of α-Fe2O3 by bisulfite Environ. Sci. Technol. 1986 20 943–948.

    Article  CAS  PubMed  Google Scholar 

  34. B. C. Faust, M. R. Hoffmann and D. W. Bahnemann, Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3J. Phys. Chem. 1989 93 6371–6381.

    Article  CAS  Google Scholar 

  35. R. E. Huie, C. L. Clifton and P. Neta, Electron-transfer reaction rates and equilibria of the carbonate and sulfate radical anions Radiat. Phys. Chem. 1991 38 477–481.

    CAS  Google Scholar 

  36. J. R. Bargar, J. D. Kubicki, R. Reitmeyer and J. A. Davis, ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite Geochim. Cosmochim. Acta 2005 69 1527–1542.

    Article  CAS  Google Scholar 

  37. A. J. Feitz and T. D. Waite, Kinetic modeling of TiO2-catalyzed photodegradation of trace levels of microcystin-LR Environ. Sci. Technol. 2003 37 561–568.

    Article  CAS  PubMed  Google Scholar 

  38. I. J. Rhile, T. F. Markle, H. Nagao, A. G. Di Pasquale, O. P. Lam, M. A. Lockwood, K. Rotter and J. M. Mayer, Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols J. Am. Chem. Soc. 2006 128 6075–6088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Platz, O. J. Nielsen, T. J. Wallington, J. C. Ball, M. D. Hurley, A. M. Straccia, W. F. Schneider and J. Sehested, Atmospheric chemistry of the phenoxy radical, C6H5O(?): UV spectrum and kinetics of its reaction with NO, NO2 and O2J. Phys. Chem. A 1998 102 7964–7974.

    Article  CAS  Google Scholar 

  40. M. N. Alvarez, G. Peluffo, L. Folkes, P. Wardman and R. Radi, Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: Pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies Free Radical Biol. Med. 2007 43 1523–1533.

    Article  CAS  Google Scholar 

  41. R. Frank and W. Klöpffer, Spectral solar photon irradiance in Central Europe and the adjacent North Sea Chemosphere 1988 17 985–994.

    Article  Google Scholar 

  42. E. M. White, P. P. Vaughan and R. G. Zepp, Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of dissolved organic matter in a coastal river of the southeastern United States Aquat. Sci. 2003 65 402–414.

    Article  CAS  Google Scholar 

  43. S. Chiron, C. Minero and D. Vione, Occurrence of 2,4-dichlorophenol and of 2,4-dichloro-6-nitrophenol in the Rhône river delta (Southern France) Environ. Sci. Technol. 2007 41 3127–3133.

    Article  CAS  PubMed  Google Scholar 

  44. J. Hoigné, Formulation and calibration of environmental reaction kinetics: Oxidations by aqueous photooxidants as an example, in Aquatic Chemical Kinetics, ed. W. Stumm, Wiley, New York, 1990, pp. 43–70.

    Google Scholar 

  45. P. Warneck and C. Wurzinger, Product quantum yields for the 305-nm photodecomposition of NO3- in aqueous solution J. Phys. Chem. 1988 92 6278–6283.

    Article  CAS  Google Scholar 

  46. G. Mark, H.-G. Korth, H.-P. Schuchmann and C. von Sonntag, The photochemistry of aqueous nitrate ion revisited J. Photochem. Photobiol., A. 1996 101 89–103.

    Article  CAS  Google Scholar 

  47. S. Goldstein and J. Rabani, Mechanism of nitrite formation by nitrate photolysis in aqueous solution: The role of peroxynitrite, nitrogen dioxide, and hydroxyl radical J. Am. Chem. Soc. 2007 129 10597–10601.

    Article  CAS  PubMed  Google Scholar 

  48. D. Vione, V. Maurino, C. Minero, E. Pelizzetti, M. A. J. Harrison, R. I. Olariu and C. Arsene, Photochemical reactions in the tropospheric aqueous phase and on particulate matter Chem. Soc. Rev. 2006 35 441–463.

    CAS  PubMed  Google Scholar 

  49. J. W. Coddington, J. K. Hurst and S. V. Lymar, Hydroxyl radical formation during peroxynitrous acid decomposition J. Am. Chem. Soc. 1999 121 2438–2443.

    Article  CAS  Google Scholar 

  50. G. Merenyi, J. Lind, G. Czapski and S. Goldstein, The decomposition of peroxynitrite does not yield nitroxyl anion and singlet oxygen Proc. Nat. Acad. Sci. USA 2000 97 8216–8218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. G. Merenyi, J. Lind, S. Goldstein and G. Czapski, Mechanism and thermochemistry of peroxynitrite decomposition in water J. Phys. Chem. A 1999 103 5685–5691.

    Article  CAS  Google Scholar 

  52. R. M. Uppu, J. N. Lemercier, G. L. Squadrito, H. W. Zhang, R. M. Bolzan and W. A. Pryor, Nitrosation by peroxynitrite: Use of phenol as a probe Arch. Biochem. Biophys. 1998 358 1–16.

    Article  CAS  PubMed  Google Scholar 

  53. S. Goldstein, G. Czapski, J. Lind and G. Merenyi, Carbonate radical ion is the only observable intermediate in the reaction of peroxynitrite with CO2Chem. Res. Toxicol. 2001 14 1273–1276.

    Article  CAS  PubMed  Google Scholar 

  54. G. L. Squadrito and W. A. Pryor, Mapping the reaction of peroxynitrite with CO2: Energetics, reactive species, and biological implications Chem. Res. Toxicol. 2002 15 885–895.

    Article  CAS  PubMed  Google Scholar 

  55. S. Goldstein, G. Czapski, J. Lind and G. Merenyi, Carbonate radical is the only observable intermediate in the reaction of peroxynitrite with CO2Chem. Res. Toxicol. 2001 14 1273–1276.

    Article  CAS  PubMed  Google Scholar 

  56. S. Goldstein, D. Meyerstein, R. van Eldik and G. Czapski, Evidence for adduct formation between ONOO- and CO2 from high-pressure pulse radiolysis J. Phys. Chem. A 2000 104 9712–9714.

    Article  CAS  Google Scholar 

  57. R. M. Uppu, G. L. Squadrito, R. M. Bolzan and W. A. Pryor, Nitration and nitrosation by peroxynitrite: Role of CO2 and evidence for common intermediates J. Am. Chem. Soc. 2000 122 6911–6916.

    Article  CAS  Google Scholar 

  58. D. Vione, V. Maurino, E. Pelizzetti and C. Minero, Phenol photonitration and photonitrosation upon nitrite photolysis in basic solution Int. J. Environ. Anal. Chem. 2004 84 493–504.

    Article  CAS  Google Scholar 

  59. M. Fischer and P. Warneck, Photodecomposition of nitrite and undissociated nitrous acid in aqueous solution J. Phys. Chem. 1996 100 18749–18756.

    Article  CAS  Google Scholar 

  60. J. Dzengel, J. Theurich and D. W. Bahnemann, Formation of nitroaromatic compounds in advanced oxidation processes: photolysis versus photocatalysis Environ. Sci. Technol. 1999 33 294–300.

    Article  CAS  Google Scholar 

  61. G. E. Howe, L. L. Marking, T. D. Bills, J. J. Rach and F. L. Mayer, Effects of water temperature and pH on toxicity of terbufos, trichlorfon, 4-nitrophenol and 2,4-dinitrophenol to the amphipod Gammarus-pseudolimnaeus and rainbow trout (Oncorhyncus mykiss) Environ. Toxicol. Chem. 1994 13 51–66.

    Article  CAS  Google Scholar 

  62. S. Chiron, S. Barbati, M. De Meo and A. Botta, In vitro synthesis of 1,N-6-etheno-2′-deoxyadenosine and 1,N-2-etheno-2′-deoxyguanosine by 2,4-dinitrophenol and 1,3-dinitropyrene in presence of a bacterial nitroreductase Environ. Toxicol. 2007 22 222–227.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Vione.

Additional information

Electronic supplementary information (ESI) available: Fig. S1-S15. See DOI: 10.1039/b807265p

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiron, S., Barbati, S., Khanra, S. et al. Bicarbonate-enhanced transformation of phenol upon irradiation of hematite, nitrate, and nitrite. Photochem Photobiol Sci 8, 91–100 (2009). https://doi.org/10.1039/b807265p

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b807265p

Navigation